
Effective JavaN
Second Edition

Praise for the First Edition

“I sure wish I had this book ten years ago. Some might think that I don’t need
any Java books, but I need this one.”

—James Gosling, fellow and vice president, Sun Microsystems, Inc., and
inventor of the Java programming language

“An excellent book, crammed with good advice on using the Java program-
ming language and object-oriented programming in general.”

—Gilad Bracha, distinguished engineer, Cadence Design Systems,
and coauthor of The Java™ Language Specification,

Third Edition (Addison-Wesley, 2005)

“10/10—anyone aspiring to write good Java code that others will appreciate
reading and maintaining should be required to own a copy of this book. This
is one of those rare books where the information won’t become obsolete with
subsequent releases of the JDK library.”

—Peter Tran, bartender, JavaRanch.com

“The best Java book yet written.... Really great; very readable and eminently
useful. I can’t say enough good things about this book. At JavaOne 2001,
James Gosling said, ‘Go buy this book!’ I’m glad I did, and I couldn’t agree
more.”

—Keith Edwards, senior member of research staff,
Computer Science Lab at the Palo Alto Research Center (PARC),

and author of Core JINI (Prentice Hall, 2000)

“This is a truly excellent book done by the guy who designed several of the
better recent Java platform APIs (including the Collections API).”

—James Clark, technical lead of the XML Working Group
during the creation of the XML 1.0 Recommendation;

editor of the XPath and XSLT Recommendations

“Great content. Analogous to Scott Meyers’s classic Effective C++. If you know
the basics of Java, this has to be your next book.”

—Gary K. Evans, OO mentor and consultant, Evanetics, Inc.

“Josh Bloch gives great insight into best practices that really can only be discov-
ered after years of study and experience.”

—Mark Mascolino, software engineer

“This is a superb book. It clearly covers many of the language/platform subtleties
and trickery you need to learn to become a real Java master.”

—Victor Wiewiorowski, vice president development and code quality manager,
ValueCommerce Co., Tokyo, Japan

“I like books that under-promise in their titles and over-deliver in their contents.
This book has 57 items of programming advice that are well chosen. Each item
reveals a clear, deep grasp of the language. Each one illustrates in simple, practical
terms the limits of programming on intuition alone, or taking the most direct path
to a solution without fully understanding what the language offers.”

—Michael Ernest, Inkling Research, Inc.

“I don’t find many programming books that make me want to read every page—
this is one of them.”

—Matt Tucker, chief technical officer, Jive Software

“Great how-to resource for the experienced developer.”

—John Zukowski, author of numerous Java books

“I picked this book up two weeks ago and can safely say I learned more about the
Java language in three days of reading than I did in three months of study! An
excellent book and a welcome addition to my Java library.”

—Jane Griscti, I/T advisory specialist

Effective Java™

Second Edition

The Java™ Series

Ken Arnold, James Gosling, David Holmes
The Java™ Programming Language, Fourth Edition

Joshua Bloch
Effective Java™ Programming Language Guide

Joshua Bloch
Effective Java,™ Second Edition

Stephanie Bodoff, Dale Green, Kim Haase, Eric Jendrock
The J2EE™ Tutorial, Second Edition

Mary Campione, Kathy Walrath, Alison Huml
The Java™ Tutorial, Third Edition: A Short Course on
the Basics

Mary Campione, Kathy Walrath, Alison Huml, The
Tutorial Team
The Java™ Tutorial Continued: The Rest of the JDK™

Patrick Chan
The Java™ Developers Almanac 1.4, Volume 1

Patrick Chan
The Java™ Developers Almanac 1.4, Volume 2

Patrick Chan, Rosanna Lee
The Java™ Class Libraries, Second Edition, Volume 2:
java.applet, java.awt, java.beans

Patrick Chan, Rosanna Lee, Doug Kramer
The Java™ Class Libraries, Second Edition, Volume 1:
Supplement for the Java™ 2 Platform, Standard Edition,
v1.2

Kirk Chen, Li Gong
Programming Open Service Gateways with Java™
Embedded Server

Zhiqun Chen
Java Card™ Technology for Smart Cards: Architecture
and Programmer’s Guide

Maydene Fisher, Jon Ellis, Jonathan Bruce

JDBC™ API Tutorial and Reference, Third Edition

Eric Freeman, Susanne Hupfer, Ken Arnold
JavaSpaces™ Principles, Patterns, and Practice

Li Gong, Gary Ellison, Mary Dageforde

Inside Java™ 2 Platform Security, Second Edition:
Architecture, API Design, and Implementation

James Gosling, Bill Joy, Guy Steele, Gilad Bracha

The Java™ Language Specification, Third Edition

Chet Haase, Romain Guy
Filthy Rich Clients: Developing Animated and Graphical
Effects for Desktop Java™ Applications

Mark Hapner, Rich Burridge, Rahul Sharma, Joseph
Fialli, Kim Haase
Java™ Message Service API Tutorial and Reference:
Messaging for the J2EE™ Platform

Eric Jendrock, Jennifer Ball
The Java™ EE 5 Tutorial, Third Edition

Jonni Kanerva
The Java™ FAQ

Jonathan Knudsen
Kicking Butt with MIDP and MSA: Creating Great
Mobile Applications

David Lambert
Smarter Selling: Consultative Selling Strategies to Meet
Your Buyer’s Needs Every Time

Doug Lea
Concurrent Programming in Java™, Second Edition:
Design Principles and Patterns

Rosanna Lee, Scott Seligman
JNDI API Tutorial and Reference: Building Directory-
Enabled Java™ Applications

Sheng Liang
The Java™ Native Interface: Programmer’s Guide and
Specification

Tim Lindholm, Frank Yellin
The Java™ Virtual Machine Specification, Second Edition

Roger Riggs, Antero Taivalsaari, Jim Van Peursem, Jyri
Huopaniemi, Mark Patel, Aleksi Uotila
Programming Wireless Devices with the Java™ 2
Platform, Micro Edition, Second Edition

Rahul Sharma, Beth Stearns, Tony Ng
J2EE™ Connector Architecture and Enterprise
Application Integration

Inderjeet Singh, Beth Stearns, Mark Johnson, Enterprise
Team
Designing Enterprise Applications with the J2EE™
Platform, Second Edition

Inderjeet Singh, Sean Brydon, Greg Murray, Vijay
Ramachandran, Thierry Violleau, Beth Stearns
Designing Web Services with the J2EE™ 1.4 Platform:
JAX-RPC, SOAP, and XML Technologies

Kathy Walrath, Mary Campione, Alison Huml, Sharon
Zakhour
The JFC Swing Tutorial, Second Edition: A Guide to
Constructing GUIs

Steve Wilson, Jeff Kesselman
Java™ Platform Performance: Strategies and Tactics

Sharon Zakhour, Scott Hommel, Jacob Royal,
Isaac Rabinovitch, Tom Risser, Mark Hoeber
The Java™ Tutorial, Fourth Edition: A Short Course
on the Basics

Effective Java™

Second Edition

Joshua Bloch

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been
printed with initial capital letters or in all capitals.

Sun Microsystems, Inc. has intellectual property rights relating to implementations of the technology described in this pub-
lication. In particular, and without limitation, these intellectual property rights may include one or more U.S. patents, for-
eign patents, or pending applications.

Sun, Sun Microsystems, the Sun logo, J2ME, J2EE, Java Card, and all Sun and Java based trademarks and logos are trade-
marks or registered trademarks of Sun Microsystems, Inc., in the United States and other countries. UNIX is a registered
trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd. THIS PUBLICA-
TION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT. THIS PUBLICATION COULD INCLUDE TECHNICAL
INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMA-
TION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN
MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE
PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any
kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages
in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which
may include electronic versions and/or custom covers and content particular to your business, training goals, marketing
focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2008926278

Copyright © 2008 Sun Microsystems, Inc.
4150 Network Circle,
Santa Clara, California 95054 U.S.A.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permis-
sion must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or trans-
mission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-35668-0
ISBN-10: 0-321-35668-3

Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts.
First printing, May 2008

www.informit.com/onlineedition

To my family: Cindy, Tim, and Matt

This page intentionally left blank

ix

Contents

Foreword . xiii

Preface .xv

Acknowledgments. xix

1 Introduction .1

2 Creating and Destroying Objects.5
Item 1: Consider static factory methods instead of constructors . . . 5
Item 2: Consider a builder when faced with many constructor

parameters . 11
Item 3: Enforce the singleton property with a private

constructor or an enum type . 17
Item 4: Enforce noninstantiability with a private constructor 19
Item 5: Avoid creating unnecessary objects 20
Item 6: Eliminate obsolete object references 24
Item 7: Avoid finalizers . 27

3 Methods Common to All Objects.33
Item 8: Obey the general contract when overriding equals 33
Item 9: Always override hashCode when you

override equals. 45
Item 10: Always override toString . 51
Item 11: Override clone judiciously . 54
Item 12: Consider implementing Comparable 62

CONTENTSx

4 Classes and Interfaces. .67
Item 13: Minimize the accessibility of classes and members 67
Item 14: In public classes, use accessor methods,

not public fields . 71
Item 15: Minimize mutability . 73
Item 16: Favor composition over inheritance 81
Item 17: Design and document for inheritance or else prohibit it . . 87
Item 18: Prefer interfaces to abstract classes 93
Item 19: Use interfaces only to define types. 98
Item 20: Prefer class hierarchies to tagged classes 100
Item 21: Use function objects to represent strategies 103
Item 22: Favor static member classes over nonstatic 106

5 Generics .109
Item 23: Don’t use raw types in new code 109
Item 24: Eliminate unchecked warnings. 116
Item 25: Prefer lists to arrays . 119
Item 26: Favor generic types. 124
Item 27: Favor generic methods . 129
Item 28: Use bounded wildcards to increase API flexibility 134
Item 29: Consider typesafe heterogeneous containers 142

6 Enums and Annotations .147
Item 30: Use enums instead of int constants. 147
Item 31: Use instance fields instead of ordinals 158
Item 32: Use EnumSet instead of bit fields 159
Item 33: Use EnumMap instead of ordinal indexing. 161
Item 34: Emulate extensible enums with interfaces 165
Item 35: Prefer annotations to naming patterns 169
Item 36: Consistently use the Override annotation. 176
Item 37: Use marker interfaces to define types 179

7 Methods .181
Item 38: Check parameters for validity . 181
Item 39: Make defensive copies when needed 184
Item 40: Design method signatures carefully 189
Item 41: Use overloading judiciously . 191

CONTENTS xi

Item 42: Use varargs judiciously . 197
Item 43: Return empty arrays or collections, not nulls 201
Item 44: Write doc comments for all exposed API elements 203

8 General Programming .209
Item 45: Minimize the scope of local variables 209
Item 46: Prefer for-each loops to traditional for loops 212
Item 47: Know and use the libraries . 215
Item 48: Avoid float and double if exact answers

are required . 218
Item 49: Prefer primitive types to boxed primitives 221
Item 50: Avoid strings where other types are more appropriate . . 224
Item 51: Beware the performance of string concatenation 227
Item 52: Refer to objects by their interfaces 228
Item 53: Prefer interfaces to reflection . 230
Item 54: Use native methods judiciously. 233
Item 55: Optimize judiciously . 234
Item 56: Adhere to generally accepted naming conventions 237

9 Exceptions .241
Item 57: Use exceptions only for exceptional conditions 241
Item 58: Use checked exceptions for recoverable conditions

and runtime exceptions for programming errors 244
Item 59: Avoid unnecessary use of checked exceptions 246
Item 60: Favor the use of standard exceptions. 248
Item 61: Throw exceptions appropriate to the abstraction. 250
Item 62: Document all exceptions thrown by each method. 252
Item 63: Include failure-capture information in

detail messages . 254
Item 64: Strive for failure atomicity . 256
Item 65: Don’t ignore exceptions . 258

10 Concurrency. .259
Item 66: Synchronize access to shared mutable data. 259
Item 67: Avoid excessive synchronization 265
Item 68: Prefer executors and tasks to threads. 271
Item 69: Prefer concurrency utilities to wait and notify. 273

CONTENTSxii

Item 70: Document thread safety . 278
Item 71: Use lazy initialization judiciously 282
Item 72: Don’t depend on the thread scheduler 286
Item 73: Avoid thread groups . 288

11 Serialization .289
Item 74: Implement Serializable judiciously. 289
Item 75: Consider using a custom serialized form 295
Item 76: Write readObject methods defensively 302
Item 77: For instance control, prefer enum types

to readResolve . 308
Item 78: Consider serialization proxies instead of serialized

instances . 312

Appendix: Items Corresponding to First Edition317

References .321

Index .327

xiii

Foreword

IF a colleague were to say to you, “Spouse of me this night today manufactures the
unusual meal in a home. You will join?” three things would likely cross your mind:
third, that you had been invited to dinner; second, that English was not your col-
league’s first language; and first, a good deal of puzzlement.

If you have ever studied a second language yourself and then tried to use it
outside the classroom, you know that there are three things you must master: how
the language is structured (grammar), how to name things you want to talk about
(vocabulary), and the customary and effective ways to say everyday things
(usage). Too often only the first two are covered in the classroom, and you find
native speakers constantly suppressing their laughter as you try to make yourself
understood.

It is much the same with a programming language. You need to understand the
core language: is it algorithmic, functional, object-oriented? You need to know the
vocabulary: what data structures, operations, and facilities are provided by the
standard libraries? And you need to be familiar with the customary and effective
ways to structure your code. Books about programming languages often cover
only the first two, or discuss usage only spottily. Maybe that’s because the first
two are in some ways easier to write about. Grammar and vocabulary are proper-
ties of the language alone, but usage is characteristic of a community that uses it.

The Java programming language, for example, is object-oriented with single
inheritance and supports an imperative (statement-oriented) coding style within
each method. The libraries address graphic display support, networking, distrib-
uted computing, and security. But how is the language best put to use in practice?

There is another point. Programs, unlike spoken sentences and unlike most
books and magazines, are likely to be changed over time. It’s typically not enough
to produce code that operates effectively and is readily understood by other per-
sons; one must also organize the code so that it is easy to modify. There may be
ten ways to write code for some task T. Of those ten ways, seven will be awkward,
inefficient, or puzzling. Of the other three, which is most likely to be similar to the
code needed for the task T' in next year’s software release?

FOREWORDxiv

There are numerous books from which you can learn the grammar of the Java
Programming Language, including The Java™ Programming Language by Arnold,
Gosling, and Holmes [Arnold05] or The Java™ Language Specification by Gos-
ling, Joy, yours truly, and Bracha [JLS]. Likewise, there are dozens of books on
the libraries and APIs associated with the Java programming language.

This book addresses your third need: customary and effective usage. Joshua
Bloch has spent years extending, implementing, and using the Java programming
language at Sun Microsystems; he has also read a lot of other people’s code,
including mine. Here he offers good advice, systematically organized, on how to
structure your code so that it works well, so that other people can understand it, so
that future modifications and improvements are less likely to cause headaches—
perhaps, even, so that your programs will be pleasant, elegant, and graceful.

Guy L. Steele Jr.
Burlington, Massachusetts
April 2001

xv

Preface

Preface to the Second Edition

A lot has happened to the Java platform since I wrote the first edition of this book
in 2001, and it’s high time for a second edition. The most significant set of changes
was the addition of generics, enum types, annotations, autoboxing, and the for-each
loop in Java 5. A close second was the addition of the new concurrency library,
java.util.concurrent, also released in Java 5. With Gilad Bracha, I had the good
fortune to lead the teams that designed the new language features. I also had the
good fortune to serve on the team that designed and developed the concurrency
library, which was led by Doug Lea.

The other big change in the platform is the widespread adoption of modern
Integrated Development Environments (IDEs), such as Eclipse, IntelliJ IDEA, and
NetBeans, and of static analysis tools, such as FindBugs. While I have not been
involved in these efforts, I’ve benefited from them immensely and learned how
they affect the Java development experience.

In 2004, I moved from Sun to Google, but I’ve continued my involvement in
the development of the Java platform over the past four years, contributing to the
concurrency and collections APIs through the good offices of Google and the Java
Community Process. I’ve also had the pleasure of using the Java platform to
develop libraries for use within Google. Now I know what it feels like to be a user.

As was the case in 2001 when I wrote the first edition, my primary goal is to
share my experience with you so that you can imitate my successes while avoiding
my failures. The new material continues to make liberal use of real-world exam-
ples from the Java platform libraries.

The first edition succeeded beyond my wildest expectations, and I’ve done my
best to stay true to its spirit while covering all of the new material that was
required to bring the book up to date. It was inevitable that the book would grow,
and grow it did, from fifty-seven items to seventy-eight. Not only did I add
twenty-three items, but I thoroughly revised all the original material and retired a

PREFACExvi

few items whose better days had passed. In the Appendix, you can see how the
material in this edition relates to the material in the first edition.

In the Preface to the First Edition, I wrote that the Java programming language
and its libraries were immensely conducive to quality and productivity, and a joy
to work with. The changes in releases 5 and 6 have taken a good thing and made it
better. The platform is much bigger now than it was in 2001 and more complex,
but once you learn the patterns and idioms for using the new features, they make
your programs better and your life easier. I hope this edition captures my contin-
ued enthusiasm for the platform and helps make your use of the platform and its
new features more effective and enjoyable.

San Jose, California
April 2008

Preface to the First Edition

In 1996 I pulled up stakes and headed west to work for JavaSoft, as it was then
known, because it was clear that that was where the action was. In the intervening
five years I’ve served as Java platform libraries architect. I’ve designed, imple-
mented, and maintained many of the libraries and served as a consultant for many
others. Presiding over these libraries as the Java platform matured was a once-in-a-
lifetime opportunity. It is no exaggeration to say that I had the privilege to work with
some of the great software engineers of our generation. In the process, I learned a lot
about the Java programming language—what works, what doesn’t, and how to use
the language and its libraries to best effect.

This book is my attempt to share my experience with you so that you can imi-
tate my successes while avoiding my failures. I borrowed the format from Scott
Meyers’s Effective C++ [Meyers98], which consists of fifty items, each convey-
ing one specific rule for improving your programs and designs. I found the format
to be singularly effective, and I hope you do too.

In many cases, I took the liberty of illustrating the items with real-world
examples from the Java platform libraries. When describing something that could
have been done better, I tried to pick on code that I wrote myself, but occasionally
I pick on something written by a colleague. I sincerely apologize if, despite my
best efforts, I’ve offended anyone. Negative examples are cited not to cast blame

PREFACE xvii

but in the spirit of cooperation, so that all of us can benefit from the experience of
those who’ve gone before.

While this book is not targeted solely at developers of reusable components, it
is inevitably colored by my experience writing such components over the past two
decades. I naturally think in terms of exported APIs (Application Programming
Interfaces), and I encourage you to do likewise. Even if you aren’t developing
reusable components, thinking in these terms tends to improve the quality of the
software you write. Furthermore, it’s not uncommon to write a reusable compo-
nent without knowing it: You write something useful, share it with your buddy
across the hall, and before long you have half a dozen users. At this point, you no
longer have the flexibility to change the API at will and are thankful for all the
effort that you put into designing the API when you first wrote the software.

My focus on API design may seem a bit unnatural to devotees of the new
lightweight software development methodologies, such as Extreme Programming
[Beck99]. These methodologies emphasize writing the simplest program that
could possibly work. If you’re using one of these methodologies, you’ll find that a
focus on API design serves you well in the refactoring process. The fundamental
goals of refactoring are the improvement of system structure and the avoidance of
code duplication. These goals are impossible to achieve in the absence of well-
designed APIs for the components of the system.

No language is perfect, but some are excellent. I have found the Java
programming language and its libraries to be immensely conducive to quality and
productivity, and a joy to work with. I hope this book captures my enthusiasm and
helps make your use of the language more effective and enjoyable.

Cupertino, California
April 2001

This page intentionally left blank

xix

Acknowledgments

Acknowledgments for the Second Edition

I thank the readers of the first edition of this book for giving it such a kind and
enthusiastic reception, for taking its ideas to heart, and for letting me know what a
positive influence it had on them and their work. I thank the many professors who
used the book in their courses, and the many engineering teams that adopted it.

I thank the whole team at Addison-Wesley for the their kindness, profession-
alism, patience, and grace under pressure. Through it all, my editor Greg Doench
remained unflappable: a fine editor and a perfect gentleman. My production man-
ager, Julie Nahil, was everything that a production manager should be: diligent,
prompt, organized, and friendly. My copy editor, Barbara Wood, was meticulous
and tasteful.

I have once again been blessed with the best team of reviewers imaginable,
and I give my sincerest thanks to each of them. The core team, who reviewed
every chapter, consisted of Lexi Baugher, Cindy Bloch, Beth Bottos, Joe Bowbeer,
Brian Goetz, Tim Halloran, Brian Kernighan, Rob Konigsberg, Tim Peierls, Bill
Pugh, Yoshiki Shibata, Peter Stout, Peter Weinberger, and Frank Yellin. Other
reviewers included Pablo Bellver, Dan Bloch, Dan Bornstein, Kevin Bourrillion,
Martin Buchholz, Joe Darcy, Neal Gafter, Laurence Gonsalves, Aaron Green-
house, Barry Hayes, Peter Jones, Angelika Langer, Doug Lea, Bob Lee, Jeremy
Manson, Tom May, Mike McCloskey, Andriy Tereshchenko, and Paul Tyma.
Again, these reviewers made numerous suggestions that led to great improve-
ments in this book and saved me from many embarrassments. And again, any
remaining embarrassments are my responsibility.

I give special thanks to Doug Lea and Tim Peierls, who served as sounding
boards for many of the ideas in this book. Doug and Tim were unfailingly gener-
ous with their time and knowledge.

I thank my manager at Google, Prabha Krishna, for her continued support and
encouragement.

ACKNOWLEDGMENTSxx

Finally, I thank my wife, Cindy Bloch, for encouraging me to write, for read-
ing each item in raw form, for helping me with Framemaker, for writing the index,
and for putting up with me while I wrote.

Acknowledgments for the First Edition

I thank Patrick Chan for suggesting that I write this book and for pitching the idea to
Lisa Friendly, the series managing editor; Tim Lindholm, the series technical editor;
and Mike Hendrickson, executive editor of Addison-Wesley. I thank Lisa, Tim, and
Mike for encouraging me to pursue the project and for their superhuman patience
and unyielding faith that I would someday write this book.

I thank James Gosling and his original team for giving me something great to
write about, and I thank the many Java platform engineers who followed in
James’s footsteps. In particular, I thank my colleagues in Sun’s Java Platform
Tools and Libraries Group for their insights, their encouragement, and their sup-
port. The team consists of Andrew Bennett, Joe Darcy, Neal Gafter, Iris Garcia,
Konstantin Kladko, Ian Little, Mike McCloskey, and Mark Reinhold. Former
members include Zhenghua Li, Bill Maddox, and Naveen Sanjeeva.

I thank my manager, Andrew Bennett, and my director, Larry Abrahams, for
lending their full and enthusiastic support to this project. I thank Rich Green, the
VP of Engineering at Java Software, for providing an environment where engi-
neers are free to think creatively and to publish their work.

I have been blessed with the best team of reviewers imaginable, and I give my
sincerest thanks to each of them: Andrew Bennett, Cindy Bloch, Dan Bloch, Beth
Bottos, Joe Bowbeer, Gilad Bracha, Mary Campione, Joe Darcy, David Eckhardt,
Joe Fialli, Lisa Friendly, James Gosling, Peter Haggar, David Holmes, Brian
Kernighan, Konstantin Kladko, Doug Lea, Zhenghua Li, Tim Lindholm, Mike
McCloskey, Tim Peierls, Mark Reinhold, Ken Russell, Bill Shannon, Peter Stout,
Phil Wadler, and two anonymous reviewers. They made numerous suggestions
that led to great improvements in this book and saved me from many
embarrassments. Any remaining embarrassments are my responsibility.

Numerous colleagues, inside and outside Sun, participated in technical
discussions that improved the quality of this book. Among others, Ben Gomes,
Steffen Grarup, Peter Kessler, Richard Roda, John Rose, and David Stoutamire

ACKNOWLEDGMENTS xxi

contributed useful insights. A special thanks is due Doug Lea, who served as a
sounding board for many of the ideas in this book. Doug has been unfailingly
generous with his time and his knowledge.

I thank Julie Dinicola, Jacqui Doucette, Mike Hendrickson, Heather Olszyk,
Tracy Russ, and the whole team at Addison-Wesley for their support and profes-
sionalism. Even under an impossibly tight schedule, they were always friendly
and accommodating.

I thank Guy Steele for writing the Foreword. I am honored that he chose to
participate in this project.

Finally, I thank my wife, Cindy Bloch, for encouraging and occasionally
threatening me to write this book, for reading each item in its raw form, for help-
ing me with Framemaker, for writing the index, and for putting up with me while I
wrote.

This page intentionally left blank

1

C H A P T E R 1
Introduction

THIS book is designed to help you make the most effective use of the Java™

programming language and its fundamental libraries, java.lang, java.util,
and, to a lesser extent, java.util.concurrent and java.io. The book discusses
other libraries from time to time, but it does not cover graphical user interface
programming, enterprise APIs, or mobile devices.

This book consists of seventy-eight items, each of which conveys one rule.
The rules capture practices generally held to be beneficial by the best and most
experienced programmers. The items are loosely grouped into ten chapters, each
concerning one broad aspect of software design. The book is not intended to be
read from cover to cover: each item stands on its own, more or less. The items are
heavily cross-referenced so you can easily plot your own course through the book.

Many new features were added to the platform in Java 5 (release 1.5). Most of
the items in this book use these features in some way. The following table shows
you where to go for primary coverage of these features:

Feature Chapter or Item

Generics Chapter 5

Enums Items 30–34

Annotations Items 35–37

For-each loop Item 46

Autoboxing Items 40, 49

Varargs Item 42

Static import Item 19

java.util.concurrent Items 68, 69

CHAPTER 1 INTRODUCTION2

Most items are illustrated with program examples. A key feature of this book
is that it contains code examples illustrating many design patterns and idioms.
Where appropriate, they are cross-referenced to the standard reference work in
this area [Gamma95].

Many items contain one or more program examples illustrating some practice
to be avoided. Such examples, sometimes known as antipatterns, are clearly
labeled with a comment such as “// Never do this!” In each case, the item
explains why the example is bad and suggests an alternative approach.

This book is not for beginners: it assumes that you are already comfortable
with the Java programming language. If you are not, consider one of the many fine
introductory texts [Arnold05, Sestoft05]. While the book is designed to be acces-
sible to anyone with a working knowledge of the language, it should provide food
for thought even for advanced programmers.

Most of the rules in this book derive from a few fundamental principles. Clar-
ity and simplicity are of paramount importance. The user of a module should
never be surprised by its behavior. Modules should be as small as possible but no
smaller. (As used in this book, the term module refers to any reusable software
component, from an individual method to a complex system consisting of multiple
packages.) Code should be reused rather than copied. The dependencies between
modules should be kept to a minimum. Errors should be detected as soon as possi-
ble after they are made, ideally at compile time.

While the rules in this book do not apply 100 percent of the time, they do
characterize best programming practices in the great majority of cases. You
should not slavishly follow these rules, but violate them only occasionally and
with good reason. Learning the art of programming, like most other disciplines,
consists of first learning the rules and then learning when to break them.

For the most part, this book is not about performance. It is about writing pro-
grams that are clear, correct, usable, robust, flexible, and maintainable. If you can
do that, it’s usually a relatively simple matter to get the performance you need
(Item 55). Some items do discuss performance concerns, and a few of these items
provide performance numbers. These numbers, which are introduced with the
phrase “On my machine,” should be regarded as approximate at best.

For what it’s worth, my machine is an aging homebuilt 2.2 GHz dual-core
AMD Opteron™ 170 with 2 gigabytes of RAM, running Sun’s 1.6_05 release of
the Java SE Development Kit (JDK) atop Microsoft Windows® XP Professional
SP2. This JDK has two virtual machines, the Java HotSpot™ Client and Server
VMs. Performance numbers were measured on the Server VM.

CHAPTER 1 INTRODUCTION 3

When discussing features of the Java programming language and its libraries,
it is sometimes necessary to refer to specific releases. For brevity, this book uses
“engineering version numbers” in preference to official release names. This table
shows the mapping between release names and engineering version numbers.

The examples are reasonably complete, but they favor readability over com-
pleteness. They freely use classes from the packages java.util and java.io. In
order to compile the examples, you may have to add one or more of these import
statements:

import java.util.*;
import java.util.concurrent.*;
import java.io.*;

Other boilerplate is similarly omitted. The book’s Web site, http://

java.sun.com/docs/books/effective, contains an expanded version of each
example, which you can compile and run.

For the most part, this book uses technical terms as they are defined in The
Java Language Specification, Third Edition [JLS]. A few terms deserve special
mention. The language supports four kinds of types: interfaces (including annota-
tions), classes (including enums), arrays, and primitives. The first three are known
as reference types. Class instances and arrays are objects; primitive values are not.
A class’s members consist of its fields, methods, member classes, and member
interfaces. A method’s signature consists of its name and the types of its formal
parameters; the signature does not include the method’s return type.

This book uses a few terms differently from the The Java Language Specifica-
tion. Unlike The Java Language Specification, this book uses inheritance as a syn-
onym for subclassing. Instead of using the term inheritance for interfaces, this

Official Release Name Engineering Version Number

JDK 1.1.x / JRE 1.1.x 1.1

Java 2 Platform, Standard Edition, v 1.2 1.2

Java 2 Platform, Standard Edition, v 1.3 1.3

Java 2 Platform, Standard Edition, v 1.4 1.4

Java 2 Platform, Standard Edition, v 5.0 1.5

Java Platform, Standard Edition 6 1.6

http://java.sun.com/docs/books/effective
http://java.sun.com/docs/books/effective

CHAPTER 1 INTRODUCTION4

book simply states that a class implements an interface or that one interface
extends another. To describe the access level that applies when none is specified,
this book uses the descriptive term package-private instead of the technically cor-
rect term default access [JLS, 6.6.1].

This book uses a few technical terms that are not defined in The Java Lan-
guage Specification. The term exported API, or simply API, refers to the classes,
interfaces, constructors, members, and serialized forms by which a programmer
accesses a class, interface, or package. (The term API, which is short for applica-
tion programming interface, is used in preference to the otherwise preferable term
interface to avoid confusion with the language construct of that name.) A pro-
grammer who writes a program that uses an API is referred to as a user of the API.
A class whose implementation uses an API is a client of the API.

Classes, interfaces, constructors, members, and serialized forms are collec-
tively known as API elements. An exported API consists of the API elements that
are accessible outside of the package that defines the API. These are the API ele-
ments that any client can use and the author of the API commits to support. Not
coincidentally, they are also the elements for which the Javadoc utility generates
documentation in its default mode of operation. Loosely speaking, the exported
API of a package consists of the public and protected members and constructors
of every public class or interface in the package.

5

C H A P T E R 2
Creating and Destroying Objects

THIS chapter concerns creating and destroying objects: when and how to create
them, when and how to avoid creating them, how to ensure they are destroyed in a
timely manner, and how to manage any cleanup actions that must precede their
destruction.

Item 1: Consider static factory methods instead of constructors

The normal way for a class to allow a client to obtain an instance of itself is to pro-
vide a public constructor. There is another technique that should be a part of every
programmer’s toolkit. A class can provide a public static factory method, which is
simply a static method that returns an instance of the class. Here’s a simple exam-
ple from Boolean (the boxed primitive class for the primitive type boolean). This
method translates a boolean primitive value into a Boolean object reference:

public static Boolean valueOf(boolean b) {
return b ? Boolean.TRUE : Boolean.FALSE;

}

Note that a static factory method is not the same as the Factory Method pattern
from Design Patterns [Gamma95, p. 107]. The static factory method described in
this item has no direct equivalent in Design Patterns.

A class can provide its clients with static factory methods instead of, or in
addition to, constructors. Providing a static factory method instead of a public
constructor has both advantages and disadvantages.

One advantage of static factory methods is that, unlike constructors, they
have names. If the parameters to a constructor do not, in and of themselves,
describe the object being returned, a static factory with a well-chosen name is eas-
ier to use and the resulting client code easier to read. For example, the constructor

CHAPTER 2 CREATING AND DESTROYING OBJECTS6

BigInteger(int, int, Random), which returns a BigInteger that is probably
prime, would have been better expressed as a static factory method named BigIn-
teger.probablePrime. (This method was eventually added in the 1.4 release.)

A class can have only a single constructor with a given signature. Program-
mers have been known to get around this restriction by providing two constructors
whose parameter lists differ only in the order of their parameter types. This is a
really bad idea. The user of such an API will never be able to remember which
constructor is which and will end up calling the wrong one by mistake. People
reading code that uses these constructors will not know what the code does with-
out referring to the class documentation.

Because they have names, static factory methods don’t share the restriction
discussed in the previous paragraph. In cases where a class seems to require multi-
ple constructors with the same signature, replace the constructors with static fac-
tory methods and carefully chosen names to highlight their differences.

A second advantage of static factory methods is that, unlike constructors,
they are not required to create a new object each time they’re invoked. This
allows immutable classes (Item 15) to use preconstructed instances, or to cache
instances as they’re constructed, and dispense them repeatedly to avoid creating
unnecessary duplicate objects. The Boolean.valueOf(boolean) method illus-
trates this technique: it never creates an object. This technique is similar to the
Flyweight pattern [Gamma95, p. 195]. It can greatly improve performance if
equivalent objects are requested often, especially if they are expensive to create.

The ability of static factory methods to return the same object from repeated
invocations allows classes to maintain strict control over what instances exist at
any time. Classes that do this are said to be instance-controlled. There are several
reasons to write instance-controlled classes. Instance control allows a class to
guarantee that it is a singleton (Item 3) or noninstantiable (Item 4). Also, it allows
an immutable class (Item 15) to make the guarantee that no two equal instances
exist: a.equals(b) if and only if a==b. If a class makes this guarantee, then its cli-
ents can use the == operator instead of the equals(Object) method, which may
result in improved performance. Enum types (Item 30) provide this guarantee.

A third advantage of static factory methods is that, unlike constructors,
they can return an object of any subtype of their return type. This gives you
great flexibility in choosing the class of the returned object.

One application of this flexibility is that an API can return objects without
making their classes public. Hiding implementation classes in this fashion leads to
a very compact API. This technique lends itself to interface-based frameworks
(Item 18), where interfaces provide natural return types for static factory methods.

ITEM 1: CONSIDER STATIC FACTORY METHODS INSTEAD OF CONSTRUCTORS 7

Interfaces can’t have static methods, so by convention, static factory methods for
an interface named Type are put in a noninstantiable class (Item 4) named Types.

For example, the Java Collections Framework has thirty-two convenience
implementations of its collection interfaces, providing unmodifiable collections,
synchronized collections, and the like. Nearly all of these implementations are
exported via static factory methods in one noninstantiable class (java.util.Col-
lections). The classes of the returned objects are all nonpublic.

The Collections Framework API is much smaller than it would have been had
it exported thirty-two separate public classes, one for each convenience imple-
mentation. It is not just the bulk of the API that is reduced, but the conceptual
weight. The user knows that the returned object has precisely the API specified by
its interface, so there is no need to read additional class documentation for the
implementation classes. Furthermore, using such a static factory method requires
the client to refer to the returned object by its interface rather than its implementa-
tion class, which is generally good practice (Item 52).

Not only can the class of an object returned by a public static factory method
be nonpublic, but the class can vary from invocation to invocation depending on
the values of the parameters to the static factory. Any class that is a subtype of the
declared return type is permissible. The class of the returned object can also vary
from release to release for enhanced software maintainability and performance.

The class java.util.EnumSet (Item 32), introduced in release 1.5, has no
public constructors, only static factories. They return one of two implementations,
depending on the size of the underlying enum type: if it has sixty-four or fewer
elements, as most enum types do, the static factories return a RegularEnumSet
instance, which is backed by a single long; if the enum type has sixty-five or more
elements, the factories return a JumboEnumSet instance, backed by a long array.

The existence of these two implementation classes is invisible to clients. If
RegularEnumSet ceased to offer performance advantages for small enum types, it
could be eliminated from a future release with no ill effects. Similarly, a future
release could add a third or fourth implementation of EnumSet if it proved benefi-
cial for performance. Clients neither know nor care about the class of the object
they get back from the factory; they care only that it is some subclass of EnumSet.

The class of the object returned by a static factory method need not even exist
at the time the class containing the method is written. Such flexible static factory
methods form the basis of service provider frameworks, such as the Java Database
Connectivity API (JDBC). A service provider framework is a system in which
multiple service providers implement a service, and the system makes the imple-
mentations available to its clients, decoupling them from the implementations.

CHAPTER 2 CREATING AND DESTROYING OBJECTS8

There are three essential components of a service provider framework: a ser-
vice interface, which providers implement; a provider registration API, which the
system uses to register implementations, giving clients access to them; and a ser-
vice access API, which clients use to obtain an instance of the service. The service
access API typically allows but does not require the client to specify some criteria
for choosing a provider. In the absence of such a specification, the API returns an
instance of a default implementation. The service access API is the “flexible static
factory” that forms the basis of the service provider framework.

An optional fourth component of a service provider framework is a service
provider interface, which providers implement to create instances of their service
implementation. In the absence of a service provider interface, implementations
are registered by class name and instantiated reflectively (Item 53). In the case of
JDBC, Connection plays the part of the service interface, DriverManager.reg-
isterDriver is the provider registration API, DriverManager.getConnection is
the service access API, and Driver is the service provider interface.

There are numerous variants of the service provider framework pattern. For
example, the service access API can return a richer service interface than the one
required of the provider, using the Adapter pattern [Gamma95, p. 139]. Here is a
simple implementation with a service provider interface and a default provider:

// Service provider framework sketch

// Service interface
public interface Service {

... // Service-specific methods go here
}

// Service provider interface
public interface Provider {

Service newService();
}

// Noninstantiable class for service registration and access
public class Services {

private Services() { } // Prevents instantiation (Item 4)

// Maps service names to services
private static final Map<String, Provider> providers =

new ConcurrentHashMap<String, Provider>();
public static final String DEFAULT_PROVIDER_NAME = "<def>";

ITEM 1: CONSIDER STATIC FACTORY METHODS INSTEAD OF CONSTRUCTORS 9

// Provider registration API
public static void registerDefaultProvider(Provider p) {

registerProvider(DEFAULT_PROVIDER_NAME, p);
}
public static void registerProvider(String name, Provider p){

providers.put(name, p);
}

// Service access API
public static Service newInstance() {

return newInstance(DEFAULT_PROVIDER_NAME);
}
public static Service newInstance(String name) {

Provider p = providers.get(name);
if (p == null)

throw new IllegalArgumentException(
"No provider registered with name: " + name);

return p.newService();
}

}

A fourth advantage of static factory methods is that they reduce the ver-
bosity of creating parameterized type instances. Unfortunately, you must spec-
ify the type parameters when you invoke the constructor of a parameterized class
even if they’re obvious from context. This typically requires you to provide the
type parameters twice in quick succession:

Map<String, List<String>> m =
new HashMap<String, List<String>>();

This redundant specification quickly becomes painful as the length and complex-
ity of the type parameters increase. With static factories, however, the compiler
can figure out the type parameters for you. This is known as type inference. For
example, suppose that HashMap provided this static factory:

public static <K, V> HashMap<K, V> newInstance() {
return new HashMap<K, V>();

}

Then you could replace the wordy declaration above with this succinct alternative:

Map<String, List<String>> m = HashMap.newInstance();

Someday the language may perform this sort of type inference on constructor
invocations as well as method invocations, but as of release 1.6, it does not.

CHAPTER 2 CREATING AND DESTROYING OBJECTS10

Unfortunately, the standard collection implementations such as HashMap do
not have factory methods as of release 1.6, but you can put these methods in your
own utility class. More importantly, you can provide such static factories in your
own parameterized classes.

The main disadvantage of providing only static factory methods is that
classes without public or protected constructors cannot be subclassed. The
same is true for nonpublic classes returned by public static factories. For example,
it is impossible to subclass any of the convenience implementation classes in the
Collections Framework. Arguably this can be a blessing in disguise, as it encour-
ages programmers to use composition instead of inheritance (Item 16).

A second disadvantage of static factory methods is that they are not
readily distinguishable from other static methods. They do not stand out in API
documentation in the way that constructors do, so it can be difficult to figure out
how to instantiate a class that provides static factory methods instead of construc-
tors. The Javadoc tool may someday draw attention to static factory methods. In
the meantime, you can reduce this disadvantage by drawing attention to static fac-
tories in class or interface comments, and by adhering to common naming conven-
tions. Here are some common names for static factory methods:

• valueOf—Returns an instance that has, loosely speaking, the same value as its
parameters. Such static factories are effectively type-conversion methods.

• of—A concise alternative to valueOf, popularized by EnumSet (Item 32).

• getInstance—Returns an instance that is described by the parameters but
cannot be said to have the same value. In the case of a singleton, getInstance
takes no parameters and returns the sole instance.

• newInstance—Like getInstance, except that newInstance guarantees that
each instance returned is distinct from all others.

• getType—Like getInstance, but used when the factory method is in a differ-
ent class. Type indicates the type of object returned by the factory method.

• newType—Like newInstance, but used when the factory method is in a differ-
ent class. Type indicates the type of object returned by the factory method.

In summary, static factory methods and public constructors both have their
uses, and it pays to understand their relative merits. Often static factories are pref-
erable, so avoid the reflex to provide public constructors without first considering
static factories.

ITEM 2: CONSIDER A BUILDER WHEN FACED WITH MANY CONSTRUCTOR PARAMETERS 11

Item 2: Consider a builder when faced with many constructor
parameters

Static factories and constructors share a limitation: they do not scale well to large
numbers of optional parameters. Consider the case of a class representing the
Nutrition Facts label that appears on packaged foods. These labels have a few
required fields—serving size, servings per container, and calories per serving—
and over twenty optional fields—total fat, saturated fat, trans fat, cholesterol,
sodium, and so on. Most products have nonzero values for only a few of these
optional fields.

What sort of constructors or static factories should you write for such a class?
Traditionally, programmers have used the telescoping constructor pattern, in
which you provide a constructor with only the required parameters, another with a
single optional parameter, a third with two optional parameters, and so on, culmi-
nating in a constructor with all the optional parameters. Here’s how it looks in
practice. For brevity’s sake, only four optional fields are shown:

// Telescoping constructor pattern - does not scale well!
public class NutritionFacts {

private final int servingSize; // (mL) required
private final int servings; // (per container) required
private final int calories; // optional
private final int fat; // (g) optional
private final int sodium; // (mg) optional
private final int carbohydrate; // (g) optional

public NutritionFacts(int servingSize, int servings) {
this(servingSize, servings, 0);

}

public NutritionFacts(int servingSize, int servings,
int calories) {

this(servingSize, servings, calories, 0);
}

public NutritionFacts(int servingSize, int servings,
int calories, int fat) {

this(servingSize, servings, calories, fat, 0);
}

public NutritionFacts(int servingSize, int servings,
int calories, int fat, int sodium) {

this(servingSize, servings, calories, fat, sodium, 0);
}

CHAPTER 2 CREATING AND DESTROYING OBJECTS12

public NutritionFacts(int servingSize, int servings,
int calories, int fat, int sodium, int carbohydrate) {

this.servingSize = servingSize;
this.servings = servings;
this.calories = calories;
this.fat = fat;
this.sodium = sodium;
this.carbohydrate = carbohydrate;

}
}

When you want to create an instance, you use the constructor with the shortest
parameter list containing all the parameters you want to set:

NutritionFacts cocaCola =
new NutritionFacts(240, 8, 100, 0, 35, 27);

Typically this constructor invocation will require many parameters that you don’t
want to set, but you’re forced to pass a value for them anyway. In this case, we
passed a value of 0 for fat. With “only” six parameters this may not seem so bad,
but it quickly gets out of hand as the number of parameters increases.

In short, the telescoping constructor pattern works, but it is hard to write
client code when there are many parameters, and harder still to read it. The
reader is left wondering what all those values mean and must carefully count
parameters to find out. Long sequences of identically typed parameters can cause
subtle bugs. If the client accidentally reverses two such parameters, the compiler
won’t complain, but the program will misbehave at runtime (Item 40).

A second alternative when you are faced with many constructor parameters is
the JavaBeans pattern, in which you call a parameterless constructor to create the
object and then call setter methods to set each required parameter and each
optional parameter of interest:

// JavaBeans Pattern - allows inconsistency, mandates mutability
public class NutritionFacts {

// Parameters initialized to default values (if any)
private int servingSize = -1; // Required; no default value
private int servings = -1; // " " " "
private int calories = 0;
private int fat = 0;
private int sodium = 0;
private int carbohydrate = 0;

public NutritionFacts() { }

ITEM 2: CONSIDER A BUILDER WHEN FACED WITH MANY CONSTRUCTOR PARAMETERS 13

// Setters
public void setServingSize(int val) { servingSize = val; }
public void setServings(int val) { servings = val; }
public void setCalories(int val) { calories = val; }
public void setFat(int val) { fat = val; }
public void setSodium(int val) { sodium = val; }
public void setCarbohydrate(int val) { carbohydrate = val; }

}

This pattern has none of the disadvantages of the telescoping constructor pattern.
It is easy, if a bit wordy, to create instances, and easy to read the resulting code:

NutritionFacts cocaCola = new NutritionFacts();
cocaCola.setServingSize(240);
cocaCola.setServings(8);
cocaCola.setCalories(100);
cocaCola.setSodium(35);
cocaCola.setCarbohydrate(27);

Unfortunately, the JavaBeans pattern has serious disadvantages of its own.
Because construction is split across multiple calls, a JavaBean may be in an
inconsistent state partway through its construction. The class does not have
the option of enforcing consistency merely by checking the validity of the con-
structor parameters. Attempting to use an object when it’s in an inconsistent state
may cause failures that are far removed from the code containing the bug, hence
difficult to debug. A related disadvantage is that the JavaBeans pattern pre-
cludes the possibility of making a class immutable (Item 15), and requires
added effort on the part of the programmer to ensure thread safety.

It is possible to reduce these disadvantages by manually “freezing” the object
when its construction is complete and not allowing it to be used until frozen, but
this variant is unwieldy and rarely used in practice. Moreover, it can cause errors
at runtime, as the compiler cannot ensure that the programmer calls the freeze
method on an object before using it.

Luckily, there is a third alternative that combines the safety of the telescoping
constructor pattern with the readability of the JavaBeans pattern. It is a form of the
Builder pattern [Gamma95, p. 97]. Instead of making the desired object directly,
the client calls a constructor (or static factory) with all of the required parameters
and gets a builder object. Then the client calls setter-like methods on the builder
object to set each optional parameter of interest. Finally, the client calls a parame-
terless build method to generate the object, which is immutable. The builder is a
static member class (Item 22) of the class it builds. Here’s how it looks in practice:

CHAPTER 2 CREATING AND DESTROYING OBJECTS14

// Builder Pattern
public class NutritionFacts {

private final int servingSize;
private final int servings;
private final int calories;
private final int fat;
private final int sodium;
private final int carbohydrate;

public static class Builder {
// Required parameters
private final int servingSize;
private final int servings;

// Optional parameters - initialized to default values
private int calories = 0;
private int fat = 0;
private int carbohydrate = 0;
private int sodium = 0;

public Builder(int servingSize, int servings) {
this.servingSize = servingSize;
this.servings = servings;

}

public Builder calories(int val)
{ calories = val; return this; }

public Builder fat(int val)
{ fat = val; return this; }

public Builder carbohydrate(int val)
{ carbohydrate = val; return this; }

public Builder sodium(int val)
{ sodium = val; return this; }

public NutritionFacts build() {
return new NutritionFacts(this);

}
}

private NutritionFacts(Builder builder) {
servingSize = builder.servingSize;
servings = builder.servings;
calories = builder.calories;
fat = builder.fat;
sodium = builder.sodium;
carbohydrate = builder.carbohydrate;

}
}

ITEM 2: CONSIDER A BUILDER WHEN FACED WITH MANY CONSTRUCTOR PARAMETERS 15

Note that NutritionFacts is immutable, and that all parameter default values
are in a single location. The builder’s setter methods return the builder itself so
that invocations can be chained. Here’s how the client code looks:

NutritionFacts cocaCola = new NutritionFacts.Builder(240, 8).
calories(100).sodium(35).carbohydrate(27).build();

This client code is easy to write and, more importantly, to read. The Builder pat-
tern simulates named optional parameters as found in Ada and Python.

Like a constructor, a builder can impose invariants on its parameters. The
build method can check these invariants. It is critical that they be checked after
copying the parameters from the builder to the object, and that they be checked on
the object fields rather than the builder fields (Item 39). If any invariants are vio-
lated, the build method should throw an IllegalStateException (Item 60). The
exception’s detail method should indicate which invariant is violated (Item 63).

Another way to impose invariants involving multiple parameters is to have
setter methods take entire groups of parameters on which some invariant must
hold. If the invariant isn’t satisfied, the setter method throws an IllegalArgu-
mentException. This has the advantage of detecting the invariant failure as soon
as the invalid parameters are passed, instead of waiting for build to be invoked.

A minor advantage of builders over constructors is that builders can have mul-
tiple varargs parameters. Constructors, like methods, can have only one varargs
parameter. Because builders use separate methods to set each parameter, they can
have as many varargs parameters as you like, up to one per setter method.

The Builder pattern is flexible. A single builder can be used to build multiple
objects. The parameters of the builder can be tweaked between object creations to
vary the objects. The builder can fill in some fields automatically, such as a serial
number that automatically increases each time an object is created.

A builder whose parameters have been set makes a fine Abstract Factory
[Gamma95, p. 87]. In other words, a client can pass such a builder to a method to
enable the method to create one or more objects for the client. To enable this
usage, you need a type to represent the builder. If you are using release 1.5 or a
later release, a single generic type (Item 26) suffices for all builders, no matter
what type of object they’re building:

// A builder for objects of type T
public interface Builder<T> {

public T build();
}

CHAPTER 2 CREATING AND DESTROYING OBJECTS16

Note that our NutritionFacts.Builder class could be declared to implement
Builder<NutritionFacts>.

Methods that take a Builder instance would typically constrain the builder’s
type parameter using a bounded wildcard type (Item 28). For example, here is a
method that builds a tree using a client-provided Builder instance to build each
node:

Tree buildTree(Builder<? extends Node> nodeBuilder) { ... }

The traditional Abstract Factory implementation in Java has been the Class
object, with the newInstance method playing the part of the build method. This
usage is fraught with problems. The newInstance method always attempts to
invoke the class’s parameterless constructor, which may not even exist. You don’t
get a compile-time error if the class has no accessible parameterless constructor.
Instead, the client code must cope with InstantiationException or IllegalAc-
cessException at runtime, which is ugly and inconvenient. Also, the newIn-
stance method propagates any exceptions thrown by the parameterless
constructor, even though newInstance lacks the corresponding throws clauses. In
other words, Class.newInstance breaks compile-time exception checking. The
Builder interface, shown above, corrects these deficiencies.

The Builder pattern does have disadvantages of its own. In order to create an
object, you must first create its builder. While the cost of creating the builder is
unlikely to be noticeable in practice, it could be a problem in some performance-
critical situations. Also, the Builder pattern is more verbose than the telescoping
constructor pattern, so it should be used only if there are enough parameters, say,
four or more. But keep in mind that you may want to add parameters in the future.
If you start out with constructors or static factories, and add a builder when the
class evolves to the point where the number of parameters starts to get out of hand,
the obsolete constructors or static factories will stick out like a sore thumb. There-
fore, it’s often better to start with a builder in the first place.

In summary, the Builder pattern is a good choice when designing classes
whose constructors or static factories would have more than a handful of
parameters, especially if most of those parameters are optional. Client code is
much easier to read and write with builders than with the traditional telescoping
constructor pattern, and builders are much safer than JavaBeans.

ITEM 3: ENFORCE THE SINGLETON PROPERTY WITH A PRIVATE CONSTRUCTOR OR AN ENUM TYPE 17

Item 3: Enforce the singleton property with a private
constructor or an enum type

A singleton is simply a class that is instantiated exactly once [Gamma95, p. 127].
Singletons typically represent a system component that is intrinsically unique,
such as the window manager or file system. Making a class a singleton can
make it difficult to test its clients, as it’s impossible to substitute a mock imple-
mentation for a singleton unless it implements an interface that serves as its type.

Before release 1.5, there were two ways to implement singletons. Both are
based on keeping the constructor private and exporting a public static member to
provide access to the sole instance. In one approach, the member is a final field:

// Singleton with public final field
public class Elvis {

public static final Elvis INSTANCE = new Elvis();
private Elvis() { ... }

public void leaveTheBuilding() { ... }
}

The private constructor is called only once, to initialize the public static final field
Elvis.INSTANCE. The lack of a public or protected constructor guarantees a
“monoelvistic” universe: exactly one Elvis instance will exist once the Elvis
class is initialized—no more, no less. Nothing that a client does can change this,
with one caveat: a privileged client can invoke the private constructor reflectively
(Item 53) with the aid of the AccessibleObject.setAccessible method. If you
need to defend against this attack, modify the constructor to make it throw an
exception if it’s asked to create a second instance.

In the second approach to implementing singletons, the public member is a
static factory method:

// Singleton with static factory
public class Elvis {

private static final Elvis INSTANCE = new Elvis();
private Elvis() { ... }
public static Elvis getInstance() { return INSTANCE; }

public void leaveTheBuilding() { ... }
}

All calls to Elvis.getInstance return the same object reference, and no other
Elvis instance will ever be created (with the same caveat mentioned above).

CHAPTER 2 CREATING AND DESTROYING OBJECTS18

The main advantage of the public field approach is that the declarations make
it clear that the class is a singleton: the public static field is final, so it will always
contain the same object reference. There is no longer any performance advantage
to the public field approach: modern Java virtual machine (JVM) implementations
are almost certain to inline the call to the static factory method.

One advantage of the factory-method approach is that it gives you the flexibil-
ity to change your mind about whether the class should be a singleton without
changing its API. The factory method returns the sole instance but could easily be
modified to return, say, a unique instance for each thread that invokes it. A second
advantage, concerning generic types, is discussed in Item 27. Often neither of
these advantages is relevant, and the final-field approach is simpler.

To make a singleton class that is implemented using either of the previous
approaches serializable (Chapter 11), it is not sufficient merely to add imple-
ments Serializable to its declaration. To maintain the singleton guarantee, you
have to declare all instance fields transient and provide a readResolve method
(Item 77). Otherwise, each time a serialized instance is deserialized, a new
instance will be created, leading, in the case of our example, to spurious Elvis
sightings. To prevent this, add this readResolve method to the Elvis class:

// readResolve method to preserve singleton property
private Object readResolve() {

// Return the one true Elvis and let the garbage collector
// take care of the Elvis impersonator.
return INSTANCE;

}

As of release 1.5, there is a third approach to implementing singletons. Simply
make an enum type with one element:

// Enum singleton - the preferred approach
public enum Elvis {

INSTANCE;

public void leaveTheBuilding() { ... }
}

This approach is functionally equivalent to the public field approach, except that it
is more concise, provides the serialization machinery for free, and provides an
ironclad guarantee against multiple instantiation, even in the face of sophisticated
serialization or reflection attacks. While this approach has yet to be widely
adopted, a single-element enum type is the best way to implement a singleton.

ITEM 4: ENFORCE NONINSTANTIABILITY WITH A PRIVATE CONSTRUCTOR 19

Item 4: Enforce noninstantiability with a private constructor

Occasionally you’ll want to write a class that is just a grouping of static methods
and static fields. Such classes have acquired a bad reputation because some people
abuse them to avoid thinking in terms of objects, but they do have valid uses. They
can be used to group related methods on primitive values or arrays, in the manner
of java.lang.Math or java.util.Arrays. They can also be used to group static
methods, including factory methods (Item 1), for objects that implement a particu-
lar interface, in the manner of java.util.Collections. Lastly, they can be used
to group methods on a final class, instead of extending the class.

Such utility classes were not designed to be instantiated: an instance would be
nonsensical. In the absence of explicit constructors, however, the compiler pro-
vides a public, parameterless default constructor. To a user, this constructor is
indistinguishable from any other. It is not uncommon to see unintentionally
instantiable classes in published APIs.

Attempting to enforce noninstantiability by making a class abstract does
not work. The class can be subclassed and the subclass instantiated. Furthermore,
it misleads the user into thinking the class was designed for inheritance (Item 17).
There is, however, a simple idiom to ensure noninstantiability. A default construc-
tor is generated only if a class contains no explicit constructors, so a class can be
made noninstantiable by including a private constructor:

// Noninstantiable utility class
public class UtilityClass {

// Suppress default constructor for noninstantiability
private UtilityClass() {

throw new AssertionError();
}
... // Remainder omitted

}

Because the explicit constructor is private, it is inaccessible outside of the
class. The AssertionError isn’t strictly required, but it provides insurance in
case the constructor is accidentally invoked from within the class. It guarantees
that the class will never be instantiated under any circumstances. This idiom is
mildly counterintuitive, as the constructor is provided expressly so that it cannot
be invoked. It is therefore wise to include a comment, as shown above.

As a side effect, this idiom also prevents the class from being subclassed. All
constructors must invoke a superclass constructor, explicitly or implicitly, and a
subclass would have no accessible superclass constructor to invoke.

CHAPTER 2 CREATING AND DESTROYING OBJECTS20

Item 5: Avoid creating unnecessary objects

It is often appropriate to reuse a single object instead of creating a new function-
ally equivalent object each time it is needed. Reuse can be both faster and more
stylish. An object can always be reused if it is immutable (Item 15).

As an extreme example of what not to do, consider this statement:

String s = new String("stringette"); // DON'T DO THIS!

The statement creates a new String instance each time it is executed, and
none of those object creations is necessary. The argument to the String construc-
tor ("stringette") is itself a String instance, functionally identical to all of the
objects created by the constructor. If this usage occurs in a loop or in a frequently
invoked method, millions of String instances can be created needlessly.

The improved version is simply the following:

 String s = "stringette";

This version uses a single String instance, rather than creating a new one
each time it is executed. Furthermore, it is guaranteed that the object will be
reused by any other code running in the same virtual machine that happens to con-
tain the same string literal [JLS, 3.10.5].

You can often avoid creating unnecessary objects by using static factory meth-
ods (Item 1) in preference to constructors on immutable classes that provide both.
For example, the static factory method Boolean.valueOf(String) is almost
always preferable to the constructor Boolean(String). The constructor creates a
new object each time it’s called, while the static factory method is never required
to do so and won’t in practice.

In addition to reusing immutable objects, you can also reuse mutable objects
if you know they won’t be modified. Here is a slightly more subtle, and much
more common, example of what not to do. It involves mutable Date objects that
are never modified once their values have been computed. This class models a
person and has an isBabyBoomer method that tells whether the person is a “baby
boomer,” in other words, whether the person was born between 1946 and 1964:

public class Person {
private final Date birthDate;

// Other fields, methods, and constructor omitted

ITEM 5: AVOID CREATING UNNECESSARY OBJECTS 21

// DON'T DO THIS!
public boolean isBabyBoomer() {

// Unnecessary allocation of expensive object
Calendar gmtCal =

Calendar.getInstance(TimeZone.getTimeZone("GMT"));
gmtCal.set(1946, Calendar.JANUARY, 1, 0, 0, 0);
Date boomStart = gmtCal.getTime();
gmtCal.set(1965, Calendar.JANUARY, 1, 0, 0, 0);
Date boomEnd = gmtCal.getTime();
return birthDate.compareTo(boomStart) >= 0 &&

birthDate.compareTo(boomEnd) < 0;
}

}

The isBabyBoomer method unnecessarily creates a new Calendar, TimeZone,
and two Date instances each time it is invoked. The version that follows avoids
this inefficiency with a static initializer:

class Person {
private final Date birthDate;
// Other fields, methods, and constructor omitted

/**
* The starting and ending dates of the baby boom.
*/
private static final Date BOOM_START;
private static final Date BOOM_END;

static {
Calendar gmtCal =

Calendar.getInstance(TimeZone.getTimeZone("GMT"));
gmtCal.set(1946, Calendar.JANUARY, 1, 0, 0, 0);
BOOM_START = gmtCal.getTime();
gmtCal.set(1965, Calendar.JANUARY, 1, 0, 0, 0);
BOOM_END = gmtCal.getTime();

}

public boolean isBabyBoomer() {
return birthDate.compareTo(BOOM_START) >= 0 &&

birthDate.compareTo(BOOM_END) < 0;
}

}

The improved version of the Person class creates Calendar, TimeZone, and
Date instances only once, when it is initialized, instead of creating them every
time isBabyBoomer is invoked. This results in significant performance gains if the

CHAPTER 2 CREATING AND DESTROYING OBJECTS22

method is invoked frequently. On my machine, the original version takes 32,000
ms for 10 million invocations, while the improved version takes 130 ms, which is
about 250 times faster. Not only is performance improved, but so is clarity.
Changing boomStart and boomEnd from local variables to static final fields makes
it clear that these dates are treated as constants, making the code more understand-
able. In the interest of full disclosure, the savings from this sort of optimization
will not always be this dramatic, as Calendar instances are particularly expensive
to create.

If the improved version of the Person class is initialized but its isBabyBoomer
method is never invoked, the BOOM_START and BOOM_END fields will be initialized
unnecessarily. It would be possible to eliminate the unnecessary initializations by
lazily initializing these fields (Item 71) the first time the isBabyBoomer method is
invoked, but it is not recommended. As is often the case with lazy initialization, it
would complicate the implementation and would be unlikely to result in a notice-
able performance improvement beyond what we’ve already achieved (Item 55).

In the previous examples in this item, it was obvious that the objects in ques-
tion could be reused because they were not modified after initialization. There are
other situations where it is less obvious. Consider the case of adapters [Gamma95,
p. 139], also known as views. An adapter is an object that delegates to a backing
object, providing an alternative interface to the backing object. Because an adapter
has no state beyond that of its backing object, there’s no need to create more than
one instance of a given adapter to a given object.

For example, the keySet method of the Map interface returns a Set view of the
Map object, consisting of all the keys in the map. Naively, it would seem that every
call to keySet would have to create a new Set instance, but every call to keySet
on a given Map object may return the same Set instance. Although the returned
Set instance is typically mutable, all of the returned objects are functionally iden-
tical: when one of the returned objects changes, so do all the others because
they’re all backed by the same Map instance. While it is harmless to create multiple
instances of the keySet view object, it is also unnecessary.

There’s a new way to create unnecessary objects in release 1.5. It is called
autoboxing, and it allows the programmer to mix primitive and boxed primitive
types, boxing and unboxing automatically as needed. Autoboxing blurs but does
not erase the distinction between primitive and boxed primitive types. There are
subtle semantic distinctions, and not-so-subtle performance differences (Item 49).
Consider the following program, which calculates the sum of all the positive int

ITEM 5: AVOID CREATING UNNECESSARY OBJECTS 23

values. To do this, the program has to use long arithmetic, because an int is not
big enough to hold the sum of all the positive int values:

// Hideously slow program! Can you spot the object creation?
public static void main(String[] args) {

Long sum = 0L;
for (long i = 0; i < Integer.MAX_VALUE; i++) {

sum += i;
}
System.out.println(sum);

}

This program gets the right answer, but it is much slower than it should be,
due to a one-character typographical error. The variable sum is declared as a Long
instead of a long, which means that the program constructs about 231 unnecessary
Long instances (roughly one for each time the long i is added to the Long sum).
Changing the declaration of sum from Long to long reduces the runtime from 43
seconds to 6.8 seconds on my machine. The lesson is clear: prefer primitives to
boxed primitives, and watch out for unintentional autoboxing.

This item should not be misconstrued to imply that object creation is expen-
sive and should be avoided. On the contrary, the creation and reclamation of small
objects whose constructors do little explicit work is cheap, especially on modern
JVM implementations. Creating additional objects to enhance the clarity, simplic-
ity, or power of a program is generally a good thing.

Conversely, avoiding object creation by maintaining your own object pool is a
bad idea unless the objects in the pool are extremely heavyweight. The classic
example of an object that does justify an object pool is a database connection. The
cost of establishing the connection is sufficiently high that it makes sense to reuse
these objects. Also, your database license may limit you to a fixed number of con-
nections. Generally speaking, however, maintaining your own object pools clut-
ters your code, increases memory footprint, and harms performance. Modern
JVM implementations have highly optimized garbage collectors that easily out-
perform such object pools on lightweight objects.

The counterpoint to this item is Item 39 on defensive copying. Item 5 says,
“Don’t create a new object when you should reuse an existing one,” while Item 39
says, “Don’t reuse an existing object when you should create a new one.” Note
that the penalty for reusing an object when defensive copying is called for is far
greater than the penalty for needlessly creating a duplicate object. Failing to make
defensive copies where required can lead to insidious bugs and security holes; cre-
ating objects unnecessarily merely affects style and performance.

CHAPTER 2 CREATING AND DESTROYING OBJECTS24

Item 6: Eliminate obsolete object references

When you switch from a language with manual memory management, such as C
or C++, to a garbage-collected language, your job as a programmer is made much
easier by the fact that your objects are automatically reclaimed when you’re
through with them. It seems almost like magic when you first experience it. It can
easily lead to the impression that you don’t have to think about memory manage-
ment, but this isn’t quite true.

Consider the following simple stack implementation:

// Can you spot the "memory leak"?
public class Stack {

private Object[] elements;
private int size = 0;
private static final int DEFAULT_INITIAL_CAPACITY = 16;

public Stack() {
elements = new Object[DEFAULT_INITIAL_CAPACITY];

}

public void push(Object e) {
ensureCapacity();
elements[size++] = e;

}

public Object pop() {
if (size == 0)

throw new EmptyStackException();
return elements[--size];

}

/**
* Ensure space for at least one more element, roughly
* doubling the capacity each time the array needs to grow.
*/
private void ensureCapacity() {

if (elements.length == size)
elements = Arrays.copyOf(elements, 2 * size + 1);

}
}

There’s nothing obviously wrong with this program (but see Item 26 for a
generic version). You could test it exhaustively, and it would pass every test with
flying colors, but there’s a problem lurking. Loosely speaking, the program has a
“memory leak,” which can silently manifest itself as reduced performance due to

ITEM 6: ELIMINATE OBSOLETE OBJECT REFERENCES 25

increased garbage collector activity or increased memory footprint. In extreme
cases, such memory leaks can cause disk paging and even program failure with an
OutOfMemoryError, but such failures are relatively rare.

So where is the memory leak? If a stack grows and then shrinks, the objects
that were popped off the stack will not be garbage collected, even if the program
using the stack has no more references to them. This is because the stack main-
tains obsolete references to these objects. An obsolete reference is simply a refer-
ence that will never be dereferenced again. In this case, any references outside of
the “active portion” of the element array are obsolete. The active portion consists
of the elements whose index is less than size.

Memory leaks in garbage-collected languages (more properly known as unin-
tentional object retentions) are insidious. If an object reference is unintentionally
retained, not only is that object excluded from garbage collection, but so too are
any objects referenced by that object, and so on. Even if only a few object refer-
ences are unintentionally retained, many, many objects may be prevented from
being garbage collected, with potentially large effects on performance.

The fix for this sort of problem is simple: null out references once they
become obsolete. In the case of our Stack class, the reference to an item becomes
obsolete as soon as it’s popped off the stack. The corrected version of the pop
method looks like this:

public Object pop() {
if (size == 0)

throw new EmptyStackException();
Object result = elements[--size];
elements[size] = null; // Eliminate obsolete reference
return result;

}

An added benefit of nulling out obsolete references is that, if they are subse-
quently dereferenced by mistake, the program will immediately fail with a
NullPointerException, rather than quietly doing the wrong thing. It is always
beneficial to detect programming errors as quickly as possible.

When programmers are first stung by this problem, they may overcompensate
by nulling out every object reference as soon as the program is finished using it.
This is neither necessary nor desirable, as it clutters up the program unnecessarily.
Nulling out object references should be the exception rather than the norm.
The best way to eliminate an obsolete reference is to let the variable that contained
the reference fall out of scope. This occurs naturally if you define each variable in
the narrowest possible scope (Item 45).

CHAPTER 2 CREATING AND DESTROYING OBJECTS26

So when should you null out a reference? What aspect of the Stack class
makes it susceptible to memory leaks? Simply put, it manages its own memory.
The storage pool consists of the elements of the elements array (the object refer-
ence cells, not the objects themselves). The elements in the active portion of the
array (as defined earlier) are allocated, and those in the remainder of the array are
free. The garbage collector has no way of knowing this; to the garbage collector,
all of the object references in the elements array are equally valid. Only the pro-
grammer knows that the inactive portion of the array is unimportant. The pro-
grammer effectively communicates this fact to the garbage collector by manually
nulling out array elements as soon as they become part of the inactive portion.

Generally speaking, whenever a class manages its own memory, the pro-
grammer should be alert for memory leaks. Whenever an element is freed, any
object references contained in the element should be nulled out.

Another common source of memory leaks is caches. Once you put an
object reference into a cache, it’s easy to forget that it’s there and leave it in the
cache long after it becomes irrelevant. There are several solutions to this problem.
If you’re lucky enough to implement a cache for which an entry is relevant exactly
so long as there are references to its key outside of the cache, represent the cache
as a WeakHashMap; entries will be removed automatically after they become obso-
lete. Remember that WeakHashMap is useful only if the desired lifetime of cache
entries is determined by external references to the key, not the value.

More commonly, the useful lifetime of a cache entry is less well defined, with
entries becoming less valuable over time. Under these circumstances, the cache
should occasionally be cleansed of entries that have fallen into disuse. This can be
done by a background thread (perhaps a Timer or ScheduledThreadPoolExecu-
tor) or as a side effect of adding new entries to the cache. The LinkedHashMap
class facilitates the latter approach with its removeEldestEntry method. For
more sophisticated caches, you may need to use java.lang.ref directly.

A third common source of memory leaks is listeners and other callbacks.
If you implement an API where clients register callbacks but don’t deregister them
explicitly, they will accumulate unless you take some action. The best way to
ensure that callbacks are garbage collected promptly is to store only weak refer-
ences to them, for instance, by storing them only as keys in a WeakHashMap.

Because memory leaks typically do not manifest themselves as obvious fail-
ures, they may remain present in a system for years. They are typically discovered
only as a result of careful code inspection or with the aid of a debugging tool
known as a heap profiler. Therefore, it is very desirable to learn to anticipate prob-
lems like this before they occur and prevent them from happening.

ITEM 7: AVOID FINALIZERS 27

Item 7: Avoid finalizers

Finalizers are unpredictable, often dangerous, and generally unnecessary.
Their use can cause erratic behavior, poor performance, and portability problems.
Finalizers have a few valid uses, which we’ll cover later in this item, but as a rule
of thumb, you should avoid finalizers.

C++ programmers are cautioned not to think of finalizers as Java’s analog of
C++ destructors. In C++, destructors are the normal way to reclaim the resources
associated with an object, a necessary counterpart to constructors. In Java, the gar-
bage collector reclaims the storage associated with an object when it becomes
unreachable, requiring no special effort on the part of the programmer. C++
destructors are also used to reclaim other nonmemory resources. In Java, the try-
finally block is generally used for this purpose.

One shortcoming of finalizers is that there is no guarantee they’ll be executed
promptly [JLS, 12.6]. It can take arbitrarily long between the time that an object
becomes unreachable and the time that its finalizer is executed. This means that
you should never do anything time-critical in a finalizer. For example, it is a
grave error to depend on a finalizer to close files, because open file descriptors are
a limited resource. If many files are left open because the JVM is tardy in execut-
ing finalizers, a program may fail because it can no longer open files.

The promptness with which finalizers are executed is primarily a function of
the garbage collection algorithm, which varies widely from JVM implementation
to JVM implementation. The behavior of a program that depends on the prompt-
ness of finalizer execution may likewise vary. It is entirely possible that such a
program will run perfectly on the JVM on which you test it and then fail miserably
on the JVM favored by your most important customer.

Tardy finalization is not just a theoretical problem. Providing a finalizer for a
class can, under rare conditions, arbitrarily delay reclamation of its instances. A
colleague debugged a long-running GUI application that was mysteriously dying
with an OutOfMemoryError. Analysis revealed that at the time of its death, the
application had thousands of graphics objects on its finalizer queue just waiting to
be finalized and reclaimed. Unfortunately, the finalizer thread was running at a
lower priority than another application thread, so objects weren’t getting finalized
at the rate they became eligible for finalization. The language specification makes
no guarantees as to which thread will execute finalizers, so there is no portable
way to prevent this sort of problem other than to refrain from using finalizers.

Not only does the language specification provide no guarantee that finalizers
will get executed promptly; it provides no guarantee that they’ll get executed at

CHAPTER 2 CREATING AND DESTROYING OBJECTS28

all. It is entirely possible, even likely, that a program terminates without executing
finalizers on some objects that are no longer reachable. As a consequence, you
should never depend on a finalizer to update critical persistent state. For
example, depending on a finalizer to release a persistent lock on a shared resource
such as a database is a good way to bring your entire distributed system to a
grinding halt.

Don’t be seduced by the methods System.gc and System.runFinalization.
They may increase the odds of finalizers getting executed, but they don’t guaran-
tee it. The only methods that claim to guarantee finalization are System.runFi-
nalizersOnExit and its evil twin, Runtime.runFinalizersOnExit. These
methods are fatally flawed and have been deprecated [ThreadStop].

In case you are not yet convinced that finalizers should be avoided, here’s
another tidbit worth considering: if an uncaught exception is thrown during final-
ization, the exception is ignored, and finalization of that object terminates [JLS,
12.6]. Uncaught exceptions can leave objects in a corrupt state. If another thread
attempts to use such a corrupted object, arbitrary nondeterministic behavior may
result. Normally, an uncaught exception will terminate the thread and print a stack
trace, but not if it occurs in a finalizer—it won’t even print a warning.

Oh, and one more thing: there is a severe performance penalty for using
finalizers. On my machine, the time to create and destroy a simple object is about
5.6 ns. Adding a finalizer increases the time to 2,400 ns. In other words, it is about
430 times slower to create and destroy objects with finalizers.

So what should you do instead of writing a finalizer for a class whose objects
encapsulate resources that require termination, such as files or threads? Just pro-
vide an explicit termination method, and require clients of the class to invoke this
method on each instance when it is no longer needed. One detail worth mention-
ing is that the instance must keep track of whether it has been terminated: the
explicit termination method must record in a private field that the object is no
longer valid, and other methods must check this field and throw an Illegal-
StateException if they are called after the object has been terminated.

Typical examples of explicit termination methods are the close methods on
InputStream, OutputStream, and java.sql.Connection. Another example is
the cancel method on java.util.Timer, which performs the necessary state
change to cause the thread associated with a Timer instance to terminate itself
gently. Examples from java.awt include Graphics.dispose and Window.dis-
pose. These methods are often overlooked, with predictably dire performance
consequences. A related method is Image.flush, which deallocates all the

ITEM 7: AVOID FINALIZERS 29

resources associated with an Image instance but leaves it in a state where it can
still be used, reallocating the resources if necessary.

Explicit termination methods are typically used in combination with the
try-finally construct to ensure termination. Invoking the explicit termination
method inside the finally clause ensures that it will get executed even if an
exception is thrown while the object is being used:

// try-finally block guarantees execution of termination method
Foo foo = new Foo(...);
try {

// Do what must be done with foo
...

} finally {
foo.terminate(); // Explicit termination method

}

So what, if anything, are finalizers good for? There are perhaps two legitimate
uses. One is to act as a “safety net” in case the owner of an object forgets to call its
explicit termination method. While there’s no guarantee that the finalizer will be
invoked promptly, it may be better to free the resource late than never, in those
(hopefully rare) cases when the client fails to call the explicit termination method.
But the finalizer should log a warning if it finds that the resource has not been
terminated, as this indicates a bug in the client code, which should be fixed. If
you are considering writing such a safety-net finalizer, think long and hard about
whether the extra protection is worth the extra cost.

The four classes cited as examples of the explicit termination method pattern
(FileInputStream, FileOutputStream, Timer, and Connection) have finalizers
that serve as safety nets in case their termination methods aren’t called. Unfortu-
nately these finalizers do not log warnings. Such warnings generally can’t be
added after an API is published, as it would appear to break existing clients.

A second legitimate use of finalizers concerns objects with native peers. A
native peer is a native object to which a normal object delegates via native meth-
ods. Because a native peer is not a normal object, the garbage collector doesn’t
know about it and can’t reclaim it when its Java peer is reclaimed. A finalizer is an
appropriate vehicle for performing this task, assuming the native peer holds no
critical resources. If the native peer holds resources that must be terminated
promptly, the class should have an explicit termination method, as described
above. The termination method should do whatever is required to free the critical
resource. The termination method can be a native method, or it can invoke one.

CHAPTER 2 CREATING AND DESTROYING OBJECTS30

It is important to note that “finalizer chaining” is not performed automatically.
If a class (other than Object) has a finalizer and a subclass overrides it, the sub-
class finalizer must invoke the superclass finalizer manually. You should finalize
the subclass in a try block and invoke the superclass finalizer in the correspond-
ing finally block. This ensures that the superclass finalizer gets executed even if
the subclass finalization throws an exception and vice versa. Here’s how it looks.
Note that this example uses the Override annotation (@Override), which was
added to the platform in release 1.5. You can ignore Override annotations for
now, or see Item 36 to find out what they mean:

// Manual finalizer chaining
@Override protected void finalize() throws Throwable {

try {
... // Finalize subclass state

} finally {
super.finalize();

}
}

If a subclass implementor overrides a superclass finalizer but forgets to invoke
it, the superclass finalizer will never be invoked. It is possible to defend against
such a careless or malicious subclass at the cost of creating an additional object
for every object to be finalized. Instead of putting the finalizer on the class
requiring finalization, put the finalizer on an anonymous class (Item 22) whose
sole purpose is to finalize its enclosing instance. A single instance of the
anonymous class, called a finalizer guardian, is created for each instance of the
enclosing class. The enclosing instance stores the sole reference to its finalizer
guardian in a private instance field so the finalizer guardian becomes eligible for
finalization at the same time as the enclosing instance. When the guardian is
finalized, it performs the finalization activity desired for the enclosing instance,
just as if its finalizer were a method on the enclosing class:

// Finalizer Guardian idiom
public class Foo {

// Sole purpose of this object is to finalize outer Foo object
private final Object finalizerGuardian = new Object() {

@Override protected void finalize() throws Throwable {
... // Finalize outer Foo object

}
};
... // Remainder omitted

}

ITEM 7: AVOID FINALIZERS 31

Note that the public class, Foo, has no finalizer (other than the trivial one it
inherits from Object), so it doesn’t matter whether a subclass finalizer calls
super.finalize or not. This technique should be considered for every nonfinal
public class that has a finalizer.

In summary, don’t use finalizers except as a safety net or to terminate
noncritical native resources. In those rare instances where you do use a finalizer,
remember to invoke super.finalize. If you use a finalizer as a safety net,
remember to log the invalid usage from the finalizer. Lastly, if you need to
associate a finalizer with a public, nonfinal class, consider using a finalizer
guardian, so finalization can take place even if a subclass finalizer fails to invoke
super.finalize.

This page intentionally left blank

33

C H A P T E R 3
Methods Common to All Objects

ALTHOUGH Object is a concrete class, it is designed primarily for extension.
All of its nonfinal methods (equals, hashCode, toString, clone, and finalize)
have explicit general contracts because they are designed to be overridden. It is
the responsibility of any class overriding these methods to obey their general con-
tracts; failure to do so will prevent other classes that depend on the contracts (such
as HashMap and HashSet) from functioning properly in conjunction with the class.

This chapter tells you when and how to override the nonfinal Object methods.
The finalize method is omitted from this chapter because it was discussed in
Item 7. While not an Object method, Comparable.compareTo is discussed in this
chapter because it has a similar character.

Item 8: Obey the general contract when overriding equals

Overriding the equals method seems simple, but there are many ways to get it
wrong, and consequences can be dire. The easiest way to avoid problems is not to
override the equals method, in which case each instance of the class is equal only
to itself. This is the right thing to do if any of the following conditions apply:

• Each instance of the class is inherently unique. This is true for classes such
as Thread that represent active entities rather than values. The equals imple-
mentation provided by Object has exactly the right behavior for these classes.

• You don’t care whether the class provides a “logical equality” test. For
example, java.util.Random could have overridden equals to check whether
two Random instances would produce the same sequence of random numbers
going forward, but the designers didn’t think that clients would need or want
this functionality. Under these circumstances, the equals implementation
inherited from Object is adequate.

CHAPTER 3 METHODS COMMON TO ALL OBJECTS34

• A superclass has already overridden equals, and the superclass behavior
is appropriate for this class. For example, most Set implementations inherit
their equals implementation from AbstractSet, List implementations from
AbstractList, and Map implementations from AbstractMap.

• The class is private or package-private, and you are certain that its equals
method will never be invoked. Arguably, the equals method should be over-
ridden under these circumstances, in case it is accidentally invoked:

@Override public boolean equals(Object o) {
throw new AssertionError(); // Method is never called

}

So when is it appropriate to override Object.equals? When a class has a
notion of logical equality that differs from mere object identity, and a superclass
has not already overridden equals to implement the desired behavior. This is gen-
erally the case for value classes. A value class is simply a class that represents a
value, such as Integer or Date. A programmer who compares references to value
objects using the equals method expects to find out whether they are logically
equivalent, not whether they refer to the same object. Not only is overriding the
equals method necessary to satisfy programmer expectations; it enables instances
to serve as map keys or set elements with predictable, desirable behavior.

One kind of value class that does not require the equals method to be overrid-
den is a class that uses instance control (Item 1) to ensure that at most one object
exists with each value. Enum types (Item 30) fall into this category. For these
classes, logical equality is the same as object identity, so Object’s equals method
functions as a logical equals method.

When you override the equals method, you must adhere to its general con-
tract. Here is the contract, copied from the specification for Object [JavaSE6]:

The equals method implements an equivalence relation. It is:
• Reflexive: For any non-null reference value x, x.equals(x) must return true.

• Symmetric: For any non-null reference values x and y, x.equals(y) must re-
turn true if and only if y.equals(x) returns true.

• Transitive: For any non-null reference values x, y, z, if x.equals(y) returns
true and y.equals(z) returns true, then x.equals(z) must return true.

• Consistent: For any non-null reference values x and y, multiple invocations
of x.equals(y) consistently return true or consistently return false, pro-
vided no information used in equals comparisons on the objects is modified.

• For any non-null reference value x, x.equals(null) must return false.

ITEM 8: OBEY THE GENERAL CONTRACT WHEN OVERRIDING EQUALS 35

Unless you are mathematically inclined, this might look a bit scary, but do not
ignore it! If you violate it, you may well find that your program behaves errati-
cally or crashes, and it can be very difficult to pin down the source of the failure.
To paraphrase John Donne, no class is an island. Instances of one class are fre-
quently passed to another. Many classes, including all collections classes, depend
on the objects passed to them obeying the equals contract.

Now that you are aware of the dangers of violating the equals contract, let’s
go over the contract in detail. The good news is that, appearances notwithstand-
ing, the contract really isn’t very complicated. Once you understand it, it’s not
hard to adhere to it. Let’s examine the five requirements in turn:

Reflexivity—The first requirement says merely that an object must be equal
to itself. It is hard to imagine violating this requirement unintentionally. If you
were to violate it and then add an instance of your class to a collection, the collec-
tion’s contains method might well say that the collection didn’t contain the
instance that you just added.

Symmetry—The second requirement says that any two objects must agree on
whether they are equal. Unlike the first requirement, it’s not hard to imagine vio-
lating this one unintentionally. For example, consider the following class, which
implements a case-insensitive string. The case of the string is preserved by
toString but ignored in comparisons:

// Broken - violates symmetry!
public final class CaseInsensitiveString {

private final String s;

public CaseInsensitiveString(String s) {
if (s == null)

throw new NullPointerException();
this.s = s;

}

// Broken - violates symmetry!
@Override public boolean equals(Object o) {

if (o instanceof CaseInsensitiveString)
return s.equalsIgnoreCase(

((CaseInsensitiveString) o).s);
if (o instanceof String) // One-way interoperability!

return s.equalsIgnoreCase((String) o);
return false;

}
... // Remainder omitted

}

CHAPTER 3 METHODS COMMON TO ALL OBJECTS36

The well-intentioned equals method in this class naively attempts to interop-
erate with ordinary strings. Let’s suppose that we have one case-insensitive string
and one ordinary one:

CaseInsensitiveString cis = new CaseInsensitiveString("Polish");
String s = "polish";

As expected, cis.equals(s) returns true. The problem is that while the
equals method in CaseInsensitiveString knows about ordinary strings, the
equals method in String is oblivious to case-insensitive strings. Therefore
s.equals(cis) returns false, a clear violation of symmetry. Suppose you put a
case-insensitive string into a collection:

List<CaseInsensitiveString> list =
new ArrayList<CaseInsensitiveString>();

list.add(cis);

What does list.contains(s) return at this point? Who knows? In Sun’s cur-
rent implementation, it happens to return false, but that’s just an implementation
artifact. In another implementation, it could just as easily return true or throw a
runtime exception. Once you’ve violated the equals contract, you simply don’t
know how other objects will behave when confronted with your object.

To eliminate the problem, merely remove the ill-conceived attempt to interop-
erate with String from the equals method. Once you do this, you can refactor the
method to give it a single return:

@Override public boolean equals(Object o) {
return o instanceof CaseInsensitiveString &&

((CaseInsensitiveString) o).s.equalsIgnoreCase(s);
}

Transitivity—The third requirement of the equals contract says that if one
object is equal to a second and the second object is equal to a third, then the first
object must be equal to the third. Again, it’s not hard to imagine violating this
requirement unintentionally. Consider the case of a subclass that adds a new value
component to its superclass. In other words, the subclass adds a piece of informa-

ITEM 8: OBEY THE GENERAL CONTRACT WHEN OVERRIDING EQUALS 37

tion that affects equals comparisons. Let’s start with a simple immutable two-
dimensional integer point class:

public class Point {
private final int x;
private final int y;
public Point(int x, int y) {

this.x = x;
this.y = y;

}

@Override public boolean equals(Object o) {
if (!(o instanceof Point))

return false;
Point p = (Point)o;
return p.x == x && p.y == y;

}

... // Remainder omitted
}

Suppose you want to extend this class, adding the notion of color to a point:

public class ColorPoint extends Point {
private final Color color;

public ColorPoint(int x, int y, Color color) {
super(x, y);
this.color = color;

}

... // Remainder omitted
}

How should the equals method look? If you leave it out entirely, the imple-
mentation is inherited from Point and color information is ignored in equals
comparisons. While this does not violate the equals contract, it is clearly unac-
ceptable. Suppose you write an equals method that returns true only if its argu-
ment is another color point with the same position and color:

// Broken - violates symmetry!
@Override public boolean equals(Object o) {

if (!(o instanceof ColorPoint))
return false;

return super.equals(o) && ((ColorPoint) o).color == color;
}

CHAPTER 3 METHODS COMMON TO ALL OBJECTS38

The problem with this method is that you might get different results when
comparing a point to a color point and vice versa. The former comparison ignores
color, while the latter comparison always returns false because the type of the
argument is incorrect. To make this concrete, let’s create one point and one color
point:

Point p = new Point(1, 2);
ColorPoint cp = new ColorPoint(1, 2, Color.RED);

Then p.equals(cp) returns true, while cp.equals(p) returns false. You
might try to fix the problem by having ColorPoint.equals ignore color when
doing “mixed comparisons”:

// Broken - violates transitivity!
@Override public boolean equals(Object o) {

if (!(o instanceof Point))
return false;

// If o is a normal Point, do a color-blind comparison
if (!(o instanceof ColorPoint))

return o.equals(this);

// o is a ColorPoint; do a full comparison
return super.equals(o) && ((ColorPoint)o).color == color;

}

This approach does provide symmetry, but at the expense of transitivity:

ColorPoint p1 = new ColorPoint(1, 2, Color.RED);
Point p2 = new Point(1, 2);
ColorPoint p3 = new ColorPoint(1, 2, Color.BLUE);

Now p1.equals(p2) and p2.equals(p3) return true, while p1.equals(p3)
returns false, a clear violation of transitivity. The first two comparisons are
“color-blind,” while the third takes color into account.

So what’s the solution? It turns out that this is a fundamental problem of
equivalence relations in object-oriented languages. There is no way to extend an
instantiable class and add a value component while preserving the equals
contract, unless you are willing to forgo the benefits of object-oriented abstrac-
tion.

ITEM 8: OBEY THE GENERAL CONTRACT WHEN OVERRIDING EQUALS 39

You may hear it said that you can extend an instantiable class and add a value
component while preserving the equals contract by using a getClass test in
place of the instanceof test in the equals method:

// Broken - violates Liskov substitution principle (page 40)
@Override public boolean equals(Object o) {

if (o == null || o.getClass() != getClass())
return false;

Point p = (Point) o;
return p.x == x && p.y == y;

}

This has the effect of equating objects only if they have the same implementation
class. While this may not seem so bad, the consequences are unacceptable.

Let’s suppose we want to write a method to tell whether an integer point is on
the unit circle. Here is one way we could do it:

// Initialize UnitCircle to contain all Points on the unit circle
private static final Set<Point> unitCircle;
static {

unitCircle = new HashSet<Point>();
unitCircle.add(new Point(1, 0));
unitCircle.add(new Point(0, 1));
unitCircle.add(new Point(-1, 0));
unitCircle.add(new Point(0, -1));

}

public static boolean onUnitCircle(Point p) {
 return unitCircle.contains(p);
}

While this may not be the fastest way to implement the functionality, it works fine.
But suppose you extend Point in some trivial way that doesn’t add a value com-
ponent, say, by having its constructor keep track of how many instances have been
created:

public class CounterPoint extends Point {
private static final AtomicInteger counter =

new AtomicInteger();

public CounterPoint(int x, int y) {
super(x, y);
counter.incrementAndGet();

}
public int numberCreated() { return counter.get(); }

}

CHAPTER 3 METHODS COMMON TO ALL OBJECTS40

The Liskov substitution principle says that any important property of a type
should also hold for its subtypes, so that any method written for the type should
work equally well on its subtypes [Liskov87]. But suppose we pass a Counter-
Point instance to the onUnitCircle method. If the Point class uses a getClass-
based equals method, the onUnitCircle method will return false regardless of
the CounterPoint instance’s x and y values. This is so because collections, such
as the HashSet used by the onUnitCircle method, use the equals method to test
for containment, and no CounterPoint instance is equal to any Point. If, how-
ever, you use a proper instanceof-based equals method on Point, the same
onUnitCircle method will work fine when presented with a CounterPoint.

While there is no satisfactory way to extend an instantiable class and add a
value component, there is a fine workaround. Follow the advice of Item 16, “Favor
composition over inheritance.” Instead of having ColorPoint extend Point, give
ColorPoint a private Point field and a public view method (Item 5) that returns
the point at the same position as this color point:

// Adds a value component without violating the equals contract
public class ColorPoint {

private final Point point;
private final Color color;

public ColorPoint(int x, int y, Color color) {
if (color == null)

throw new NullPointerException();
point = new Point(x, y);
this.color = color;

}

/**
* Returns the point-view of this color point.
*/

public Point asPoint() {
return point;

}

@Override public boolean equals(Object o) {
if (!(o instanceof ColorPoint))

return false;
ColorPoint cp = (ColorPoint) o;
return cp.point.equals(point) && cp.color.equals(color);

}

... // Remainder omitted
}

ITEM 8: OBEY THE GENERAL CONTRACT WHEN OVERRIDING EQUALS 41

There are some classes in the Java platform libraries that do extend an instan-
tiable class and add a value component. For example, java.sql.Timestamp
extends java.util.Date and adds a nanoseconds field. The equals implementa-
tion for Timestamp does violate symmetry and can cause erratic behavior if
Timestamp and Date objects are used in the same collection or are otherwise inter-
mixed. The Timestamp class has a disclaimer cautioning programmers against
mixing dates and timestamps. While you won’t get into trouble as long as you
keep them separate, there’s nothing to prevent you from mixing them, and the
resulting errors can be hard to debug. This behavior of the Timestamp class was a
mistake and should not be emulated.

Note that you can add a value component to a subclass of an abstract class
without violating the equals contract. This is important for the sort of class hier-
archies that you get by following the advice in Item 20, “Prefer class hierarchies to
tagged classes.” For example, you could have an abstract class Shape with no
value components, a subclass Circle that adds a radius field, and a subclass
Rectangle that adds length and width fields. Problems of the sort shown above
won’t occur so long as it is impossible to create a superclass instance directly.

Consistency—The fourth requirement of the equals contract says that if two
objects are equal, they must remain equal for all time unless one (or both) of them
is modified. In other words, mutable objects can be equal to different objects at
different times while immutable objects can’t. When you write a class, think hard
about whether it should be immutable (Item 15). If you conclude that it should,
make sure that your equals method enforces the restriction that equal objects
remain equal and unequal objects remain unequal for all time.

Whether or not a class is immutable, do not write an equals method that
depends on unreliable resources. It’s extremely difficult to satisfy the consis-
tency requirement if you violate this prohibition. For example, java.net.URL’s
equals method relies on comparison of the IP addresses of the hosts associated
with the URLs. Translating a host name to an IP address can require network
access, and it isn’t guaranteed to yield the same results over time. This can cause
the URL equals method to violate the equals contract and has caused problems in
practice. (Unfortunately, this behavior cannot be changed due to compatibility
requirements.) With very few exceptions, equals methods should perform deter-
ministic computations on memory-resident objects.

“Non-nullity”—The final requirement, which in the absence of a name I have
taken the liberty of calling “non-nullity,” says that all objects must be unequal to
null. While it is hard to imagine accidentally returning true in response to the
invocation o.equals(null), it isn’t hard to imagine accidentally throwing a

CHAPTER 3 METHODS COMMON TO ALL OBJECTS42

NullPointerException. The general contract does not allow this. Many classes
have equals methods that guard against this with an explicit test for null:

@Override public boolean equals(Object o) {
if (o == null)

return false;
...

}

This test is unnecessary. To test its argument for equality, the equals method must
first cast its argument to an appropriate type so its accessors may be invoked or its
fields accessed. Before doing the cast, the method must use the instanceof oper-
ator to check that its argument is of the correct type:

@Override public boolean equals(Object o) {
if (!(o instanceof MyType))

return false;
MyType mt = (MyType) o;
...

}

If this type check were missing and the equals method were passed an argument
of the wrong type, the equals method would throw a ClassCastException,
which violates the equals contract. But the instanceof operator is specified to
return false if its first operand is null, regardless of what type appears in the sec-
ond operand [JLS, 15.20.2]. Therefore the type check will return false if null is
passed in, so you don’t need a separate null check.

Putting it all together, here’s a recipe for a high-quality equals method:

1. Use the == operator to check if the argument is a reference to this object.
If so, return true. This is just a performance optimization, but one that is worth
doing if the comparison is potentially expensive.

2. Use the instanceof operator to check if the argument has the correct type.
If not, return false. Typically, the correct type is the class in which the method
occurs. Occasionally, it is some interface implemented by this class. Use an in-
terface if the class implements an interface that refines the equals contract to
permit comparisons across classes that implement the interface. Collection in-
terfaces such as Set, List, Map, and Map.Entry have this property.

3. Cast the argument to the correct type. Because this cast was preceded by an
instanceof test, it is guaranteed to succeed.

ITEM 8: OBEY THE GENERAL CONTRACT WHEN OVERRIDING EQUALS 43

4. For each “significant” field in the class, check if that field of the argument
matches the corresponding field of this object. If all these tests succeed, re-
turn true; otherwise, return false. If the type in step 2 is an interface, you
must access the argument’s fields via interface methods; if the type is a class,
you may be able to access the fields directly, depending on their accessibility.

For primitive fields whose type is not float or double, use the == operator for
comparisons; for object reference fields, invoke the equals method recursive-
ly; for float fields, use the Float.compare method; and for double fields, use
Double.compare. The special treatment of float and double fields is made
necessary by the existence of Float.NaN, -0.0f and the analogous double
constants; see the Float.equals documentation for details. For array fields,
apply these guidelines to each element. If every element in an array field is sig-
nificant, you can use one of the Arrays.equals methods added in release 1.5.

Some object reference fields may legitimately contain null. To avoid the pos-
sibility of a NullPointerException, use this idiom to compare such fields:

(field == null ? o.field == null : field.equals(o.field))

This alternative may be faster if field and o.field are often identical:

(field == o.field || (field != null && field.equals(o.field)))

For some classes, such as CaseInsensitiveString above, field comparisons
are more complex than simple equality tests. If this is the case, you may want
to store a canonical form of the field, so the equals method can do cheap exact
comparisons on these canonical forms rather than more costly inexact compar-
isons. This technique is most appropriate for immutable classes (Item 15); if
the object can change, you must keep the canonical form up to date.

The performance of the equals method may be affected by the order in which
fields are compared. For best performance, you should first compare fields that
are more likely to differ, less expensive to compare, or, ideally, both. You must
not compare fields that are not part of an object’s logical state, such as Lock
fields used to synchronize operations. You need not compare redundant fields,
which can be calculated from “significant fields,” but doing so may improve
the performance of the equals method. If a redundant field amounts to a sum-
mary description of the entire object, comparing this field will save you the ex-
pense of comparing the actual data if the comparison fails. For example,
suppose you have a Polygon class, and you cache the area. If two polygons
have unequal areas, you needn’t bother comparing their edges and vertices.

CHAPTER 3 METHODS COMMON TO ALL OBJECTS44

5. When you are finished writing your equals method, ask yourself three
questions: Is it symmetric? Is it transitive? Is it consistent? And don’t just
ask yourself; write unit tests to check that these properties hold! If they don’t,
figure out why not, and modify the equals method accordingly. Of course
your equals method also has to satisfy the other two properties (reflexivity and
“non-nullity”), but these two usually take care of themselves.

For a concrete example of an equals method constructed according to the
above recipe, see PhoneNumber.equals in Item 9. Here are a few final caveats:

• Always override hashCode when you override equals (Item 9).

• Don’t try to be too clever. If you simply test fields for equality, it’s not hard
to adhere to the equals contract. If you are overly aggressive in searching for
equivalence, it’s easy to get into trouble. It is generally a bad idea to take any
form of aliasing into account. For example, the File class shouldn’t attempt to
equate symbolic links referring to the same file. Thankfully, it doesn’t.

• Don’t substitute another type for Object in the equals declaration. It is not
uncommon for a programmer to write an equals method that looks like this,
and then spend hours puzzling over why it doesn’t work properly:

public boolean equals(MyClass o) {
...

}

The problem is that this method does not override Object.equals, whose ar-
gument is of type Object, but overloads it instead (Item 41). It is acceptable to
provide such a “strongly typed” equals method in addition to the normal one
as long as the two methods return the same result, but there is no compelling
reason to do so. It may provide minor performance gains under certain circum-
stances, but it isn’t worth the added complexity (Item 55).

Consistent use of the @Override annotation, as illustrated throughout this item,
will prevent you from making this mistake (Item 36). This equals method
won’t compile and the error message will tell you exactly what is wrong:

@Override public boolean equals(MyClass o) {
...

}

ITEM 9: ALWAYS OVERRIDE HASHCODE WHEN YOU OVERRIDE EQUALS 45

Item 9: Always override hashCode when you override equals

A common source of bugs is the failure to override the hashCode method. You
must override hashCode in every class that overrides equals. Failure to do so
will result in a violation of the general contract for Object.hashCode, which will
prevent your class from functioning properly in conjunction with all hash-based
collections, including HashMap, HashSet, and Hashtable.

Here is the contract, copied from the Object specification [JavaSE6]:

• Whenever it is invoked on the same object more than once during an execu-
tion of an application, the hashCode method must consistently return the
same integer, provided no information used in equals comparisons on the
object is modified. This integer need not remain consistent from one execu-
tion of an application to another execution of the same application.

• If two objects are equal according to the equals(Object) method, then call-
ing the hashCode method on each of the two objects must produce the same
integer result.

• It is not required that if two objects are unequal according to the equals(Ob-
ject) method, then calling the hashCode method on each of the two objects
must produce distinct integer results. However, the programmer should be
aware that producing distinct integer results for unequal objects may improve
the performance of hash tables.

The key provision that is violated when you fail to override hashCode is
the second one: equal objects must have equal hash codes. Two distinct
instances may be logically equal according to a class’s equals method, but to
Object’s hashCode method, they’re just two objects with nothing much in com-
mon. Therefore Object’s hashCode method returns two seemingly random num-
bers instead of two equal numbers as required by the contract.

For example, consider the following simplistic PhoneNumber class, whose
equals method is constructed according to the recipe in Item 8:

public final class PhoneNumber {
private final short areaCode;
private final short prefix;
private final short lineNumber;

public PhoneNumber(int areaCode, int prefix,
int lineNumber) {

rangeCheck(areaCode, 999, "area code");
rangeCheck(prefix, 999, "prefix");
rangeCheck(lineNumber, 9999, "line number");

CHAPTER 3 METHODS COMMON TO ALL OBJECTS46

this.areaCode = (short) areaCode;
this.prefix = (short) prefix;
this.lineNumber = (short) lineNumber;

}

private static void rangeCheck(int arg, int max,
String name) {

if (arg < 0 || arg > max)
throw new IllegalArgumentException(name +": " + arg);

}

@Override public boolean equals(Object o) {
if (o == this)

return true;
if (!(o instanceof PhoneNumber))

return false;
PhoneNumber pn = (PhoneNumber)o;
return pn.lineNumber == lineNumber

&& pn.prefix == prefix
&& pn.areaCode == areaCode;

}

// Broken - no hashCode method!

... // Remainder omitted
}

Suppose you attempt to use this class with a HashMap:

Map<PhoneNumber, String> m
= new HashMap<PhoneNumber, String>();

m.put(new PhoneNumber(707, 867, 5309), "Jenny");

At this point, you might expect m.get(new PhoneNumber(707, 867, 5309)) to
return "Jenny", but it returns null. Notice that two PhoneNumber instances are
involved: one is used for insertion into the HashMap, and a second, equal, instance
is used for (attempted) retrieval. The PhoneNumber class’s failure to override
hashCode causes the two equal instances to have unequal hash codes, in violation
of the hashCode contract. Therefore the get method is likely to look for the phone
number in a different hash bucket from the one in which it was stored by the put
method. Even if the two instances happen to hash to the same bucket, the get
method will almost certainly return null, as HashMap has an optimization that
caches the hash code associated with each entry and doesn’t bother checking for
object equality if the hash codes don’t match.

ITEM 9: ALWAYS OVERRIDE HASHCODE WHEN YOU OVERRIDE EQUALS 47

Fixing this problem is as simple as providing a proper hashCode method for
the PhoneNumber class. So what should a hashCode method look like? It’s trivial
to write one that is legal but not good. This one, for example, is always legal but
should never be used:

// The worst possible legal hash function - never use!
@Override public int hashCode() { return 42; }

It’s legal because it ensures that equal objects have the same hash code. It’s
atrocious because it ensures that every object has the same hash code. Therefore,
every object hashes to the same bucket, and hash tables degenerate to linked lists.
Programs that should run in linear time instead run in quadratic time. For large
hash tables, this is the difference between working and not working.

A good hash function tends to produce unequal hash codes for unequal
objects. This is exactly what is meant by the third provision of the hashCode con-
tract. Ideally, a hash function should distribute any reasonable collection of
unequal instances uniformly across all possible hash values. Achieving this ideal
can be difficult. Luckily it’s not too difficult to achieve a fair approximation. Here
is a simple recipe:

1. Store some constant nonzero value, say, 17, in an int variable called result.

2. For each significant field f in your object (each field taken into account by the
equals method, that is), do the following:

a. Compute an int hash code c for the field:

i. If the field is a boolean, compute (f ? 1 : 0).

ii. If the field is a byte, char, short, or int, compute (int) f.

iii. If the field is a long, compute (int) (f ^ (f >>> 32)).

iv. If the field is a float, compute Float.floatToIntBits(f).

v. If the field is a double, compute Double.doubleToLongBits(f), and
then hash the resulting long as in step 2.a.iii.

vi. If the field is an object reference and this class’s equals method
compares the field by recursively invoking equals, recursively
invoke hashCode on the field. If a more complex comparison is
required, compute a “canonical representation” for this field and
invoke hashCode on the canonical representation. If the value of the
field is null, return 0 (or some other constant, but 0 is traditional).

CHAPTER 3 METHODS COMMON TO ALL OBJECTS48

vii. If the field is an array, treat it as if each element were a separate field.
That is, compute a hash code for each significant element by applying
these rules recursively, and combine these values per step 2.b. If every
element in an array field is significant, you can use one of the
Arrays.hashCode methods added in release 1.5.

b. Combine the hash code c computed in step 2.a into result as follows:

 result = 31 * result + c;

3. Return result.

4. When you are finished writing the hashCode method, ask yourself whether
equal instances have equal hash codes. Write unit tests to verify your intuition!
If equal instances have unequal hash codes, figure out why and fix the problem.

You may exclude redundant fields from the hash code computation. In other
words, you may ignore any field whose value can be computed from fields included
in the computation. You must exclude any fields that are not used in equals com-
parisons, or you risk violating the second provision of the hashCode contract.

A nonzero initial value is used in step 1 so the hash value will be affected by
initial fields whose hash value, as computed in step 2.a, is zero. If zero were used
as the initial value in step 1, the overall hash value would be unaffected by any
such initial fields, which could increase collisions. The value 17 is arbitrary.

The multiplication in step 2.b makes the result depend on the order of the
fields, yielding a much better hash function if the class has multiple similar fields.
For example, if the multiplication were omitted from a String hash function, all
anagrams would have identical hash codes. The value 31 was chosen because it is
an odd prime. If it were even and the multiplication overflowed, information
would be lost, as multiplication by 2 is equivalent to shifting. The advantage of
using a prime is less clear, but it is traditional. A nice property of 31 is that the
multiplication can be replaced by a shift and a subtraction for better performance:
31 * i == (i << 5) - i. Modern VMs do this sort of optimization automatically.

Let’s apply the above recipe to the PhoneNumber class. There are three signif-
icant fields, all of type short:

@Override public int hashCode() {
int result = 17;
result = 31 * result + areaCode;
result = 31 * result + prefix;
result = 31 * result + lineNumber;
return result;

}

ITEM 9: ALWAYS OVERRIDE HASHCODE WHEN YOU OVERRIDE EQUALS 49

Because this method returns the result of a simple deterministic computation
whose only inputs are the three significant fields in a PhoneNumber instance, it is
clear that equal PhoneNumber instances have equal hash codes. This method is, in
fact, a perfectly good hashCode implementation for PhoneNumber, on a par with
those in the Java platform libraries. It is simple, reasonably fast, and does a rea-
sonable job of dispersing unequal phone numbers into different hash buckets.

If a class is immutable and the cost of computing the hash code is significant,
you might consider caching the hash code in the object rather than recalculating it
each time it is requested. If you believe that most objects of this type will be used
as hash keys, then you should calculate the hash code when the instance is created.
Otherwise, you might choose to lazily initialize it the first time hashCode is
invoked (Item 71). It is not clear that our PhoneNumber class merits this treatment,
but just to show you how it’s done:

// Lazily initialized, cached hashCode
private volatile int hashCode; // (See Item 71)

@Override public int hashCode() {
int result = hashCode;
if (result == 0) {

result = 17;
result = 31 * result + areaCode;
result = 31 * result + prefix;
result = 31 * result + lineNumber;
hashCode = result;

}
return result;

}

While the recipe in this item yields reasonably good hash functions, it does
not yield state-of-the-art hash functions, nor do the Java platform libraries provide
such hash functions as of release 1.6. Writing such hash functions is a research
topic, best left to mathematicians and theoretical computer scientists. Perhaps a
later release of the platform will provide state-of-the-art hash functions for its
classes and utility methods to allow average programmers to construct such hash
functions. In the meantime, the techniques described in this item should be ade-
quate for most applications.

Do not be tempted to exclude significant parts of an object from the hash
code computation to improve performance. While the resulting hash function
may run faster, its poor quality may degrade hash tables’ performance to the point
where they become unusably slow. In particular, the hash function may, in prac-

CHAPTER 3 METHODS COMMON TO ALL OBJECTS50

tice, be confronted with a large collection of instances that differ largely in the
regions that you’ve chosen to ignore. If this happens, the hash function will map
all the instances to a very few hash codes, and hash-based collections will display
quadratic performance. This is not just a theoretical problem. The String hash
function implemented in all releases prior to 1.2 examined at most sixteen charac-
ters, evenly spaced throughout the string, starting with the first character. For large
collections of hierarchical names, such as URLs, this hash function displayed
exactly the pathological behavior noted here.

Many classes in the Java platform libraries, such as String, Integer, and
Date, include in their specifications the exact value returned by their hashCode
method as a function of the instance value. This is generally not a good idea, as it
severely limits your ability to improve the hash function in future releases. If you
leave the details of a hash function unspecified and a flaw is found or a better hash
function discovered, you can change the hash function in a subsequent release,
confident that no clients depend on the exact values returned by the hash function.

ITEM 10: ALWAYS OVERRIDE TOSTRING 51

Item 10: Always override toString

While java.lang.Object provides an implementation of the toString method,
the string that it returns is generally not what the user of your class wants to see. It
consists of the class name followed by an “at” sign (@) and the unsigned hexadeci-
mal representation of the hash code, for example, “PhoneNumber@163b91.” The
general contract for toString says that the returned string should be “a concise
but informative representation that is easy for a person to read” [JavaSE6]. While
it could be argued that “PhoneNumber@163b91” is concise and easy to read, it isn’t
very informative when compared to “(707) 867-5309.” The toString contract
goes on to say, “It is recommended that all subclasses override this method.” Good
advice, indeed!

While it isn’t as important as obeying the equals and hashCode contracts
(Item 8, Item 9), providing a good toString implementation makes your class
much more pleasant to use. The toString method is automatically invoked
when an object is passed to println, printf, the string concatenation operator, or
assert, or printed by a debugger. (The printf method was added to the platform
in release 1.5, as were related methods including String.format, which is
roughly equivalent to C’s sprintf.)

If you’ve provided a good toString method for PhoneNumber, generating a
useful diagnostic message is as easy as this:

System.out.println("Failed to connect: " + phoneNumber);

Programmers will generate diagnostic messages in this fashion whether or not
you override toString, but the messages won’t be useful unless you do. The ben-
efits of providing a good toString method extend beyond instances of the class to
objects containing references to these instances, especially collections. Which
would you rather see when printing a map, “{Jenny=PhoneNumber@163b91}” or
“{Jenny=(707) 867-5309}”?

When practical, the toString method should return all of the interesting
information contained in the object, as in the phone number example just
shown. It is impractical if the object is large or if it contains state that is not condu-
cive to string representation. Under these circumstances, toString should return a
summary such as “Manhattan white pages (1487536 listings)” or
“Thread[main,5,main]”. Ideally, the string should be self-explanatory. (The
Thread example flunks this test.)

CHAPTER 3 METHODS COMMON TO ALL OBJECTS52

One important decision you’ll have to make when implementing a toString
method is whether to specify the format of the return value in the documentation.
It is recommended that you do this for value classes, such as phone numbers or
matrices. The advantage of specifying the format is that it serves as a standard,
unambiguous, human-readable representation of the object. This representation
can be used for input and output and in persistent human-readable data objects,
such as XML documents. If you specify the format, it’s usually a good idea to pro-
vide a matching static factory or constructor so programmers can easily translate
back and forth between the object and its string representation. This approach is
taken by many value classes in the Java platform libraries, including BigInteger,
BigDecimal, and most of the boxed primitive classes.

The disadvantage of specifying the format of the toString return value is that
once you’ve specified it, you’re stuck with it for life, assuming your class is
widely used. Programmers will write code to parse the representation, to generate
it, and to embed it into persistent data. If you change the representation in a future
release, you’ll break their code and data, and they will yowl. By failing to specify
a format, you preserve the flexibility to add information or improve the format in
a subsequent release.

Whether or not you decide to specify the format, you should clearly docu-
ment your intentions. If you specify the format, you should do so precisely. For
example, here’s a toString method to go with the PhoneNumber class in Item 9:

/**
 * Returns the string representation of this phone number.
 * The string consists of fourteen characters whose format
 * is "(XXX) YYY-ZZZZ", where XXX is the area code, YYY is
 * the prefix, and ZZZZ is the line number. (Each of the
 * capital letters represents a single decimal digit.)
 *
 * If any of the three parts of this phone number is too small
 * to fill up its field, the field is padded with leading zeros.
 * For example, if the value of the line number is 123, the last
 * four characters of the string representation will be "0123".
 *
 * Note that there is a single space separating the closing
 * parenthesis after the area code from the first digit of the
 * prefix.
 */
@Override public String toString() {

return String.format("(%03d) %03d-%04d",
areaCode, prefix, lineNumber);

}

ITEM 10: ALWAYS OVERRIDE TOSTRING 53

If you decide not to specify a format, the documentation comment should read
something like this:

/**
* Returns a brief description of this potion. The exact details
* of the representation are unspecified and subject to change,
* but the following may be regarded as typical:
*
* "[Potion #9: type=love, smell=turpentine, look=india ink]"
*/
@Override public String toString() { ... }

After reading this comment, programmers who produce code or persistent
data that depends on the details of the format will have no one but themselves to
blame when the format is changed.

Whether or not you specify the format, provide programmatic access to all
of the information contained in the value returned by toString. For example,
the PhoneNumber class should contain accessors for the area code, prefix, and line
number. If you fail to do this, you force programmers who need this information
to parse the string. Besides reducing performance and making unnecessary work
for programmers, this process is error-prone and results in fragile systems that
break if you change the format. By failing to provide accessors, you turn the string
format into a de facto API, even if you’ve specified that it’s subject to change.

CHAPTER 3 METHODS COMMON TO ALL OBJECTS54

Item 11: Override clone judiciously

The Cloneable interface was intended as a mixin interface (Item 18) for objects to
advertise that they permit cloning. Unfortunately, it fails to serve this purpose. Its
primary flaw is that it lacks a clone method, and Object’s clone method is pro-
tected. You cannot, without resorting to reflection (Item 53), invoke the clone
method on an object merely because it implements Cloneable. Even a reflective
invocation may fail, as there is no guarantee that the object has an accessible
clone method. Despite this flaw and others, the facility is in wide use so it pays to
understand it. This item tells you how to implement a well-behaved clone
method, discusses when it is appropriate to do so, and presents alternatives.

So what does Cloneable do, given that it contains no methods? It determines
the behavior of Object’s protected clone implementation: if a class implements
Cloneable, Object’s clone method returns a field-by-field copy of the object;
otherwise it throws CloneNotSupportedException. This is a highly atypical use
of interfaces and not one to be emulated. Normally, implementing an interface
says something about what a class can do for its clients. In the case of Cloneable,
it modifies the behavior of a protected method on a superclass.

If implementing the Cloneable interface is to have any effect on a class, the
class and all of its superclasses must obey a fairly complex, unenforceable, and
thinly documented protocol. The resulting mechanism is extralinguistic: it creates
an object without calling a constructor.

The general contract for the clone method is weak. Here it is, copied from the
specification for java.lang.Object [JavaSE6]:

Creates and returns a copy of this object. The precise meaning of “copy” may
depend on the class of the object. The general intent is that, for any object x,
the expression

x.clone() != x

will be true, and the expression

x.clone().getClass() == x.getClass()

will be true, but these are not absolute requirements. While it is typically the
case that

x.clone().equals(x)

will be true, this is not an absolute requirement. Copying an object will typi-
cally entail creating a new instance of its class, but it may require copying of
internal data structures as well. No constructors are called.

ITEM 11: OVERRIDE CLONE JUDICIOUSLY 55

There are a number of problems with this contract. The provision that “no
constructors are called” is too strong. A well-behaved clone method can call con-
structors to create objects internal to the clone under construction. If the class is
final, clone can even return an object created by a constructor.

The provision that x.clone().getClass() should generally be identical to
x.getClass(), however, is too weak. In practice, programmers assume that if
they extend a class and invoke super.clone from the subclass, the returned object
will be an instance of the subclass. The only way a superclass can provide this
functionality is to return an object obtained by calling super.clone. If a clone
method returns an object created by a constructor, it will have the wrong class.
Therefore, if you override the clone method in a nonfinal class, you should
return an object obtained by invoking super.clone. If all of a class’s super-
classes obey this rule, then invoking super.clone will eventually invoke
Object’s clone method, creating an instance of the right class. This mechanism is
vaguely similar to automatic constructor chaining, except that it isn’t enforced.

The Cloneable interface does not, as of release 1.6, spell out in detail the
responsibilities that a class takes on when it implements this interface. In prac-
tice, a class that implements Cloneable is expected to provide a properly
functioning public clone method. It is not, in general, possible to do so unless
all of the class’s superclasses provide a well-behaved clone implementation,
whether public or protected.

Suppose you want to implement Cloneable in a class whose superclasses pro-
vide well-behaved clone methods. The object you get from super.clone() may
or may not be close to what you’ll eventually return, depending on the nature of
the class. This object will be, from the standpoint of each superclass, a fully func-
tional clone of the original object. The fields declared in your class (if any) will
have values identical to those of the object being cloned. If every field contains a
primitive value or a reference to an immutable object, the returned object may be
exactly what you need, in which case no further processing is necessary. This is
the case, for example, for the PhoneNumber class in Item 9. In this case, all you
need do in addition to declaring that you implement Cloneable is to provide pub-
lic access to Object’s protected clone method:

@Override public PhoneNumber clone() {
try {

return (PhoneNumber) super.clone();
} catch(CloneNotSupportedException e) {

throw new AssertionError(); // Can't happen
}

}

CHAPTER 3 METHODS COMMON TO ALL OBJECTS56

Note that the above clone method returns PhoneNumber, not Object. As of
release 1.5, it is legal and desirable to do this, because covariant return types were
introduced in release 1.5 as part of generics. In other words, it is now legal for an
overriding method’s return type to be a subclass of the overridden method’s return
type. This allows the overriding method to provide more information about the
returned object and eliminates the need for casting in the client. Because
Object.clone returns Object, PhoneNumber.clone must cast the result of
super.clone() before returning it, but this is far preferable to requiring every
caller of PhoneNumber.clone to cast the result. The general principle at play here
is never make the client do anything the library can do for the client.

If an object contains fields that refer to mutable objects, using the simple
clone implementation shown above can be disastrous. For example, consider the
Stack class in Item 6:

public class Stack {
private Object[] elements;
private int size = 0;
private static final int DEFAULT_INITIAL_CAPACITY = 16;

public Stack() {
this.elements = new Object[DEFAULT_INITIAL_CAPACITY];

}

public void push(Object e) {
ensureCapacity();
elements[size++] = e;

}

public Object pop() {
if (size == 0)

throw new EmptyStackException();
Object result = elements[--size];
elements[size] = null; // Eliminate obsolete reference
return result;

}

// Ensure space for at least one more element.
private void ensureCapacity() {

if (elements.length == size)
elements = Arrays.copyOf(elements, 2 * size + 1);

}
}

Suppose you want to make this class cloneable. If its clone method merely
returns super.clone(), the resulting Stack instance will have the correct value in

ITEM 11: OVERRIDE CLONE JUDICIOUSLY 57

its size field, but its elements field will refer to the same array as the original
Stack instance. Modifying the original will destroy the invariants in the clone and
vice versa. You will quickly find that your program produces nonsensical results
or throws a NullPointerException.

This situation could never occur as a result of calling the sole constructor in
the Stack class. In effect, the clone method functions as another constructor;
you must ensure that it does no harm to the original object and that it prop-
erly establishes invariants on the clone. In order for the clone method on Stack
to work properly, it must copy the internals of the stack. The easiest way to do this
is to call clone recursively on the elements array:

@Override public Stack clone() {
try {

Stack result = (Stack) super.clone();
result.elements = elements.clone();
return result;

} catch (CloneNotSupportedException e) {
throw new AssertionError();

}
}

Note that we do not have to cast the result of elements.clone() to Object[].
As of release 1.5, calling clone on an array returns an array whose compile-time
type is the same as that of the array being cloned.

Note also that the above solution would not work if the elements field were
final, because clone would be prohibited from assigning a new value to the field.
This is a fundamental problem: the clone architecture is incompatible with
normal use of final fields referring to mutable objects, except in cases where
the mutable objects may be safely shared between an object and its clone. In order
to make a class cloneable, it may be necessary to remove final modifiers from
some fields.

It is not always sufficient to call clone recursively. For example, suppose you
are writing a clone method for a hash table whose internals consist of an array of
buckets, each of which references the first entry in a linked list of key-value pairs
or is null if the bucket is empty. For performance, the class implements its own
lightweight singly linked list instead of using java.util.LinkedList internally:

public class HashTable implements Cloneable {
private Entry[] buckets = ...;

CHAPTER 3 METHODS COMMON TO ALL OBJECTS58

private static class Entry {
final Object key;
Object value;
Entry next;

Entry(Object key, Object value, Entry next) {
this.key = key;
this.value = value;
this.next = next;

}
}

... // Remainder omitted
}

Suppose you merely clone the bucket array recursively, as we did for Stack:

// Broken - results in shared internal state!
@Override public HashTable clone() {

try {
HashTable result = (HashTable) super.clone();
result.buckets = buckets.clone();
return result;

} catch (CloneNotSupportedException e) {
throw new AssertionError();

}
}

Though the clone has its own bucket array, this array references the same
linked lists as the original, which can easily cause nondeterministic behavior in
both the clone and the original. To fix this problem, you’ll have to copy the linked
list that comprises each bucket individually. Here is one common approach:

public class HashTable implements Cloneable {
private Entry[] buckets = ...;

private static class Entry {
final Object key;
Object value;
Entry next;

Entry(Object key, Object value, Entry next) {
this.key = key;
this.value = value;
this.next = next;

}

ITEM 11: OVERRIDE CLONE JUDICIOUSLY 59

// Recursively copy the linked list headed by this Entry
Entry deepCopy() {

return new Entry(key, value,
next == null ? null : next.deepCopy());

}
}

@Override public HashTable clone() {
try {

HashTable result = (HashTable) super.clone();
result.buckets = new Entry[buckets.length];
for (int i = 0; i < buckets.length; i++)

if (buckets[i] != null)
result.buckets[i] = buckets[i].deepCopy();

return result;
} catch (CloneNotSupportedException e) {

throw new AssertionError();
}

}
... // Remainder omitted

}

The private class HashTable.Entry has been augmented to support a “deep
copy” method. The clone method on HashTable allocates a new buckets array of
the proper size and iterates over the original buckets array, deep-copying each
nonempty bucket. The deep-copy method on Entry invokes itself recursively to
copy the entire linked list headed by the entry. While this technique is cute and
works fine if the buckets aren’t too long, it is not a good way to clone a linked list
because it consumes one stack frame for each element in the list. If the list is long,
this could easily cause a stack overflow. To prevent this from happening, you can
replace the recursion in deepCopy with iteration:

// Iteratively copy the linked list headed by this Entry
Entry deepCopy() {

Entry result = new Entry(key, value, next);

for (Entry p = result; p.next != null; p = p.next)
p.next = new Entry(p.next.key, p.next.value, p.next.next);

return result;
}

A final approach to cloning complex objects is to call super.clone, set all of
the fields in the resulting object to their virgin state, and then call higher-level
methods to regenerate the state of the object. In the case of our HashTable exam-

CHAPTER 3 METHODS COMMON TO ALL OBJECTS60

ple, the buckets field would be initialized to a new bucket array, and the
put(key, value) method (not shown) would be invoked for each key-value map-
ping in the hash table being cloned. This approach typically yields a simple, rea-
sonably elegant clone method that generally doesn’t run quite as fast as one that
directly manipulates the innards of the object and its clone.

Like a constructor, a clone method should not invoke any nonfinal methods
on the clone under construction (Item 17). If clone invokes an overridden method,
this method will execute before the subclass in which it is defined has had a
chance to fix its state in the clone, quite possibly leading to corruption in the clone
and the original. Therefore the put(key, value) method discussed in the previ-
ous paragraph should be either final or private. (If it is private, it is presumably the
“helper method” for a nonfinal public method.)

Object’s clone method is declared to throw CloneNotSupportedException,
but overriding clone methods can omit this declaration. Public clone methods
should omit it because methods that don’t throw checked exceptions are easier to
use (Item 59). If a class that is designed for inheritance (Item 17) overrides clone,
the overriding method should mimic the behavior of Object.clone: it should be
declared protected, it should be declared to throw CloneNotSupportedExcep-
tion, and the class should not implement Cloneable. This gives subclasses the
freedom to implement Cloneable or not, just as if they extended Object directly.

One more detail bears noting. If you decide to make a thread-safe class imple-
ment Cloneable, remember that its clone method must be properly synchronized
just like any other method (Item 66). Object’s clone method is not synchronized,
so even if it is otherwise satisfactory, you may have to write a synchronized clone
method that invokes super.clone().

To recap, all classes that implement Cloneable should override clone with a
public method whose return type is the class itself. This method should first call
super.clone and then fix any fields that need to be fixed. Typically, this means
copying any mutable objects that comprise the internal “deep structure” of the
object being cloned, and replacing the clone’s references to these objects with ref-
erences to the copies. While these internal copies can generally be made by call-
ing clone recursively, this is not always the best approach. If the class contains
only primitive fields or references to immutable objects, then it is probably the
case that no fields need to be fixed. There are exceptions to this rule. For example,
a field representing a serial number or other unique ID or a field representing the
object’s creation time will need to be fixed, even if it is primitive or immutable.

Is all this complexity really necessary? Rarely. If you extend a class that
implements Cloneable, you have little choice but to implement a well-behaved

ITEM 11: OVERRIDE CLONE JUDICIOUSLY 61

clone method. Otherwise, you are better off providing an alternative means of
object copying, or simply not providing the capability. For example, it doesn’t
make sense for immutable classes to support object copying, because copies
would be virtually indistinguishable from the original.

A fine approach to object copying is to provide a copy constructor or copy
factory. A copy constructor is simply a constructor that takes a single argument
whose type is the class containing the constructor, for example,

public Yum(Yum yum);

A copy factory is the static factory analog of a copy constructor:

public static Yum newInstance(Yum yum);

The copy constructor approach and its static factory variant have many
advantages over Cloneable/clone: they don’t rely on a risk-prone extralinguistic
object creation mechanism; they don’t demand unenforceable adherence to thinly
documented conventions; they don’t conflict with the proper use of final fields;
they don’t throw unnecessary checked exceptions; and they don’t require casts.
While it is impossible to put a copy constructor or factory in an interface,
Cloneable fails to function as an interface because it lacks a public clone
method. Therefore you aren’t giving up interface functionality by using a copy
constructor or factory in preference to a clone method.

Furthermore, a copy constructor or factory can take an argument whose type
is an interface implemented by the class. For example, by convention all general-
purpose collection implementations provide a constructor whose argument is of
type Collection or Map. Interface-based copy constructors and factories, more
properly known as conversion constructors and conversion factories, allow the
client to choose the implementation type of the copy rather than forcing the client
to accept the implementation type of the original. Suppose you have a HashSet s,
and you want to copy it as a TreeSet. The clone method can’t offer this function-
ality, but it’s easy with a conversion constructor: new TreeSet(s).

Given all of the problems associated with Cloneable, it’s safe to say that
other interfaces should not extend it, and that classes designed for inheritance
(Item 17) should not implement it. Because of its many shortcomings, some
expert programmers simply choose never to override the clone method and never
to invoke it except, perhaps, to copy arrays. If you design a class for inheritance,
be aware that if you choose not to provide a well-behaved protected clone
method, it will be impossible for subclasses to implement Cloneable.

CHAPTER 3 METHODS COMMON TO ALL OBJECTS62

Item 12: Consider implementing Comparable

Unlike the other methods discussed in this chapter, the compareTo method is not
declared in Object. Rather, it is the sole method in the Comparable interface. It is
similar in character to Object’s equals method, except that it permits order com-
parisons in addition to simple equality comparisons, and it is generic. By imple-
menting Comparable, a class indicates that its instances have a natural ordering.
Sorting an array of objects that implement Comparable is as simple as this:

Arrays.sort(a);

It is similarly easy to search, compute extreme values, and maintain automati-
cally sorted collections of Comparable objects. For example, the following pro-
gram, which relies on the fact that String implements Comparable, prints an
alphabetized list of its command-line arguments with duplicates eliminated:

public class WordList {
public static void main(String[] args) {

Set<String> s = new TreeSet<String>();
Collections.addAll(s, args);
System.out.println(s);

}
}

By implementing Comparable, you allow your class to interoperate with all of
the many generic algorithms and collection implementations that depend on this
interface. You gain a tremendous amount of power for a small amount of effort.
Virtually all of the value classes in the Java platform libraries implement Compa-
rable. If you are writing a value class with an obvious natural ordering, such as
alphabetical order, numerical order, or chronological order, you should strongly
consider implementing the interface:

public interface Comparable<T> {
int compareTo(T t);

}

The general contract of the compareTo method is similar to that of equals:

Compares this object with the specified object for order. Returns a negative in-
teger, zero, or a positive integer as this object is less than, equal to, or greater
than the specified object. Throws ClassCastException if the specified ob-
ject’s type prevents it from being compared to this object.

ITEM 12: CONSIDER IMPLEMENTING COMPARABLE 63

In the following description, the notation sgn(expression) designates the math-
ematical signum function, which is defined to return -1, 0, or 1, according to
whether the value of expression is negative, zero, or positive.

• The implementor must ensure sgn(x.compareTo(y)) == -sgn(y.compare-
To(x)) for all x and y. (This implies that x.compareTo(y) must throw an ex-
ception if and only if y.compareTo(x) throws an exception.)

• The implementor must also ensure that the relation is transitive: (x.com-
pareTo(y) > 0 && y.compareTo(z) > 0) implies x.compareTo(z) > 0.

• Finally, the implementor must ensure that x.compareTo(y) == 0 implies that
sgn(x.compareTo(z)) == sgn(y.compareTo(z)), for all z.

• It is strongly recommended, but not strictly required, that (x.compareTo(y)
== 0) == (x.equals(y)). Generally speaking, any class that implements the
Comparable interface and violates this condition should clearly indicate this
fact. The recommended language is “Note: This class has a natural ordering
that is inconsistent with equals.”

Don’t be put off by the mathematical nature of this contract. Like the equals
contract (Item 8), this contract isn’t as complicated as it looks. Within a class, any
reasonable ordering will satisfy it. Across classes, compareTo, unlike equals,
doesn’t have to work: it is permitted to throw ClassCastException if two object
references being compared refer to objects of different classes. Usually, that is
exactly what compareTo should do, and what it will do if the class is properly
parameterized. While the contract doesn’t preclude interclass comparisons, there
are, as of release 1.6, no classes in the Java platform libraries that support them.

Just as a class that violates the hashCode contract can break other classes that
depend on hashing, a class that violates the compareTo contract can break other
classes that depend on comparison. Classes that depend on comparison include
the sorted collections TreeSet and TreeMap, and the utility classes Collections
and Arrays, which contain searching and sorting algorithms.

Let’s go over the provisions of the compareTo contract. The first provision
says that if you reverse the direction of a comparison between two object refer-
ences, the expected thing happens: if the first object is less than the second, then
the second must be greater than the first; if the first object is equal to the second,
then the second must be equal to the first; and if the first object is greater than the
second, then the second must be less than the first. The second provision says that
if one object is greater than a second, and the second is greater than a third, then
the first must be greater than the third. The final provision says that all objects that
compare as equal must yield the same results when compared to any other object.

CHAPTER 3 METHODS COMMON TO ALL OBJECTS64

One consequence of these three provisions is that the equality test imposed by
a compareTo method must obey the same restrictions imposed by the equals con-
tract: reflexivity, symmetry, and transitivity. Therefore the same caveat applies:
there is no way to extend an instantiable class with a new value component while
preserving the compareTo contract, unless you are willing to forgo the benefits of
object-oriented abstraction (Item 8). The same workaround applies, too. If you
want to add a value component to a class that implements Comparable, don’t
extend it; write an unrelated class containing an instance of the first class. Then
provide a “view” method that returns this instance. This frees you to implement
whatever compareTo method you like on the second class, while allowing its cli-
ent to view an instance of the second class as an instance of the first class when
needed.

The final paragraph of the compareTo contract, which is a strong suggestion
rather than a true provision, simply states that the equality test imposed by the
compareTo method should generally return the same results as the equals
method. If this provision is obeyed, the ordering imposed by the compareTo
method is said to be consistent with equals. If it’s violated, the ordering is said to
be inconsistent with equals. A class whose compareTo method imposes an order
that is inconsistent with equals will still work, but sorted collections containing
elements of the class may not obey the general contract of the appropriate collec-
tion interfaces (Collection, Set, or Map). This is because the general contracts
for these interfaces are defined in terms of the equals method, but sorted collec-
tions use the equality test imposed by compareTo in place of equals. It is not a
catastrophe if this happens, but it’s something to be aware of.

For example, consider the BigDecimal class, whose compareTo method is
inconsistent with equals. If you create a HashSet instance and add new
BigDecimal("1.0") and new BigDecimal("1.00"), the set will contain two
elements because the two BigDecimal instances added to the set are unequal
when compared using the equals method. If, however, you perform the same
procedure using a TreeSet instead of a HashSet, the set will contain only one
element because the two BigDecimal instances are equal when compared using
the compareTo method. (See the BigDecimal documentation for details.)

Writing a compareTo method is similar to writing an equals method, but
there are a few key differences. Because the Comparable interface is parameter-
ized, the compareTo method is statically typed, so you don’t need to type check or
cast its argument. If the argument is of the wrong type, the invocation won’t even
compile. If the argument is null, the invocation should throw a NullPointerEx-
ception, and it will, as soon as the method attempts to access its members.

ITEM 12: CONSIDER IMPLEMENTING COMPARABLE 65

The field comparisons in a compareTo method are order comparisons rather
than equality comparisons. Compare object reference fields by invoking the
compareTo method recursively. If a field does not implement Comparable, or you
need to use a nonstandard ordering, you can use an explicit Comparator instead.
Either write your own, or use a preexisting one as in this compareTo method for
the CaseInsensitiveString class in Item 8.

public final class CaseInsensitiveString
implements Comparable<CaseInsensitiveString> {

public int compareTo(CaseInsensitiveString cis) {
return String.CASE_INSENSITIVE_ORDER.compare(s, cis.s);

}
... // Remainder omitted

}

Note that the CaseInsensitiveString class implements Compara-

ble<CaseInsensitiveString>. This means that a CaseInsensitiveString ref-
erence can be compared only to other CaseInsensitiveString references. It is
the normal pattern to follow when declaring a class to implement Comparable.
Note also that the parameter of the compareTo method is a CaseInsensitive-
String, not an Object. This is required by the aforementioned class declaration.

Compare integral primitive fields using the relational operators < and >. For
floating-point fields, use Double.compare or Float.compare in place of the
relational operators, which do not obey the general contract for compareTo when
applied to floating point values. For array fields, apply these guidelines to each
element.

If a class has multiple significant fields, the order in which you compare them
is critical. You must start with the most significant field and work your way down.
If a comparison results in anything other than zero (which represents equality),
you’re done; just return the result. If the most significant fields are equal, go on to
compare the next-most-significant fields, and so on. If all fields are equal, the
objects are equal; return zero. The technique is demonstrated by this compareTo
method for the PhoneNumber class in Item 9:

public int compareTo(PhoneNumber pn) {
// Compare area codes
if (areaCode < pn.areaCode)

return -1;
if (areaCode > pn.areaCode)

return 1;

CHAPTER 3 METHODS COMMON TO ALL OBJECTS66

// Area codes are equal, compare prefixes
if (prefix < pn.prefix)

return -1;
if (prefix > pn.prefix)

return 1;

// Area codes and prefixes are equal, compare line numbers
if (lineNumber < pn.lineNumber)

return -1;
if (lineNumber > pn.lineNumber)

return 1;

return 0; // All fields are equal
}

While this method works, it can be improved. Recall that the contract for com-
pareTo does not specify the magnitude of the return value, only the sign. You can
take advantage of this to simplify the code and probably make it run a bit faster:

public int compareTo(PhoneNumber pn) {
// Compare area codes
int areaCodeDiff = areaCode - pn.areaCode;
if (areaCodeDiff != 0)

return areaCodeDiff;

// Area codes are equal, compare prefixes
int prefixDiff = prefix - pn.prefix;
if (prefixDiff != 0)

return prefixDiff;

// Area codes and prefixes are equal, compare line numbers
return lineNumber - pn.lineNumber;

}

This trick works fine here but should be used with extreme caution. Don’t use
it unless you’re certain the fields in question are non-negative or, more generally,
that the difference between the lowest and highest possible field values is less than
or equal to Integer.MAX_VALUE (231-1). The reason this trick doesn’t always work
is that a signed 32-bit integer isn’t big enough to hold the difference between two
arbitrary signed 32-bit integers. If i is a large positive int and j is a large negative
int, (i - j) will overflow and return a negative value. The resulting compareTo
method will return incorrect results for some arguments and violate the first and
second provisions of the compareTo contract. This is not a purely theoretical prob-
lem: it has caused failures in real systems. These failures can be difficult to debug,
as the broken compareTo method works properly for most input values.

67

C H A P T E R 4
Classes and Interfaces

CLASSES and interfaces lie at the heart of the Java programming language.
They are its basic units of abstraction. The language provides many powerful ele-
ments that you can use to design classes and interfaces. This chapter contains
guidelines to help you make the best use of these elements so that your classes and
interfaces are usable, robust, and flexible.

Item 13: Minimize the accessibility of classes and members

The single most important factor that distinguishes a well-designed module from a
poorly designed one is the degree to which the module hides its internal data and
other implementation details from other modules. A well-designed module hides
all of its implementation details, cleanly separating its API from its implementa-
tion. Modules then communicate only through their APIs and are oblivious to
each others’ inner workings. This concept, known as information hiding or encap-
sulation, is one of the fundamental tenets of software design [Parnas72].

Information hiding is important for many reasons, most of which stem from
the fact that it decouples the modules that comprise a system, allowing them to be
developed, tested, optimized, used, understood, and modified in isolation. This
speeds up system development because modules can be developed in parallel. It
eases the burden of maintenance because modules can be understood more
quickly and debugged with little fear of harming other modules. While informa-
tion hiding does not, in and of itself, cause good performance, it enables effective
performance tuning: once a system is complete and profiling has determined
which modules are causing performance problems (Item 55), those modules can
be optimized without affecting the correctness of other modules. Information hid-
ing increases software reuse because modules that aren’t tightly coupled often
prove useful in other contexts besides the ones for which they were developed.

CHAPTER 4 CLASSES AND INTERFACES68

Finally, information hiding decreases the risk in building large systems, because
individual modules may prove successful even if the system does not.

Java has many facilities to aid in information hiding. The access control mecha-
nism [JLS, 6.6] specifies the accessibility of classes, interfaces, and members. The
accessibility of an entity is determined by the location of its declaration and by
which, if any, of the access modifiers (private, protected, and public) is present
on the declaration. Proper use of these modifiers is essential to information hiding.

The rule of thumb is simple: make each class or member as inaccessible as
possible. In other words, use the lowest possible access level consistent with the
proper functioning of the software that you are writing.

For top-level (non-nested) classes and interfaces, there are only two possible
access levels: package-private and public. If you declare a top-level class or inter-
face with the public modifier, it will be public; otherwise, it will be package-pri-
vate. If a top-level class or interface can be made package-private, it should be. By
making it package-private, you make it part of the implementation rather than the
exported API, and you can modify it, replace it, or eliminate it in a subsequent
release without fear of harming existing clients. If you make it public, you are
obligated to support it forever to maintain compatibility.

If a package-private top-level class (or interface) is used by only one class,
consider making the top-level class a private nested class of the sole class that uses
it (Item 22). This reduces its accessibility from all the classes in its package to the
one class that uses it. But it is far more important to reduce the accessibility of a
gratuitously public class than of a package-private top-level class: the public class
is part of the package’s API, while the package-private top-level class is already
part of its implementation.

For members (fields, methods, nested classes, and nested interfaces), there are
four possible access levels, listed here in order of increasing accessibility:

• private—The member is accessible only from the top-level class where it is
declared.

• package-private—The member is accessible from any class in the package
where it is declared. Technically known as default access, this is the access lev-
el you get if no access modifier is specified.

• protected—The member is accessible from subclasses of the class where it is
declared (subject to a few restrictions [JLS, 6.6.2]) and from any class in the
package where it is declared.

• public—The member is accessible from anywhere.

ITEM 13: MINIMIZE THE ACCESSIBILITY OF CLASSES AND MEMBERS 69

After carefully designing your class’s public API, your reflex should be to
make all other members private. Only if another class in the same package really
needs to access a member should you remove the private modifier, making the
member package-private. If you find yourself doing this often, you should reex-
amine the design of your system to see if another decomposition might yield
classes that are better decoupled from one another. That said, both private and
package-private members are part of a class’s implementation and do not normally
impact its exported API. These fields can, however, “leak” into the exported API
if the class implements Serializable (Item 74, Item 75).

For members of public classes, a huge increase in accessibility occurs when
the access level goes from package-private to protected. A protected member is
part of the class’s exported API and must be supported forever. Also, a protected
member of an exported class represents a public commitment to an implementa-
tion detail (Item 17). The need for protected members should be relatively rare.

There is one rule that restricts your ability to reduce the accessibility of meth-
ods. If a method overrides a superclass method, it is not permitted to have a lower
access level in the subclass than it does in the superclass [JLS, 8.4.8.3]. This is
necessary to ensure that an instance of the subclass is usable anywhere that an
instance of the superclass is usable. If you violate this rule, the compiler will gen-
erate an error message when you try to compile the subclass. A special case of this
rule is that if a class implements an interface, all of the class methods that are also
present in the interface must be declared public. This is so because all members of
an interface are implicitly public [JLS, 9.1.5].

To facilitate testing, you may be tempted to make a class, interface, or mem-
ber more accessible. This is fine up to a point. It is acceptable to make a private
member of a public class package-private in order to test it, but it is not acceptable
to raise the accessibility any higher than that. In other words, it is not acceptable to
make a class, interface, or member a part of a package’s exported API to facilitate
testing. Luckily, it isn’t necessary either, as tests can be made to run as part of the
package being tested, thus gaining access to its package-private elements.

Instance fields should never be public (Item 14). If an instance field is non-
final, or is a final reference to a mutable object, then by making the field public,
you give up the ability to limit the values that can be stored in the field. This
means you also give up the ability to enforce invariants involving the field. Also,
you give up the ability to take any action when the field is modified, so classes
with public mutable fields are not thread-safe. Even if a field is final and refers
to an immutable object, by making the field public you give up the flexibility to
switch to a new internal data representation in which the field does not exist.

CHAPTER 4 CLASSES AND INTERFACES70

The same advice applies to static fields, with the one exception. You can
expose constants via public static final fields, assuming the constants form an inte-
gral part of the abstraction provided by the class. By convention, such fields have
names consisting of capital letters, with words separated by underscores (Item
56). It is critical that these fields contain either primitive values or references to
immutable objects (Item 15). A final field containing a reference to a mutable
object has all the disadvantages of a nonfinal field. While the reference cannot be
modified, the referenced object can be modified—with disastrous results.

Note that a nonzero-length array is always mutable, so it is wrong for a class
to have a public static final array field, or an accessor that returns such a
field. If a class has such a field or accessor, clients will be able to modify the con-
tents of the array. This is a frequent source of security holes:

// Potential security hole!
public static final Thing[] VALUES = { ... };

Beware of the fact that many IDEs generate accessors that return references to pri-
vate array fields, resulting in exactly this problem. There are two ways to fix the
problem. You can make the public array private and add a public immutable list:

private static final Thing[] PRIVATE_VALUES = { ... };
public static final List<Thing> VALUES =
 Collections.unmodifiableList(Arrays.asList(PRIVATE_VALUES));

Alternatively, you can make the array private and add a public method that
returns a copy of a private array:

private static final Thing[] PRIVATE_VALUES = { ... };
public static final Thing[] values() {

return PRIVATE_VALUES.clone();
}

To choose between these alternatives, think about what the client is likely to do
with the result. Which return type will be more convenient? Which will give bet-
ter performance?

To summarize, you should always reduce accessibility as much as possible.
After carefully designing a minimal public API, you should prevent any stray
classes, interfaces, or members from becoming a part of the API. With the excep-
tion of public static final fields, public classes should have no public fields.
Ensure that objects referenced by public static final fields are immutable.

ITEM 14: IN PUBLIC CLASSES, USE ACCESSOR METHODS, NOT PUBLIC FIELDS 71

Item 14: In public classes, use accessor methods, not public fields

Occasionally, you may be tempted to write degenerate classes that serve no pur-
pose other than to group instance fields:

// Degenerate classes like this should not be public!
class Point {

public double x;
public double y;

}

Because the data fields of such classes are accessed directly, these classes do
not offer the benefits of encapsulation (Item 13). You can’t change the representa-
tion without changing the API, you can’t enforce invariants, and you can’t take
auxiliary action when a field is accessed. Hard-line object-oriented programmers
feel that such classes are anathema and should always be replaced by classes with
private fields and public accessor methods (getters) and, for mutable classes,
mutators (setters):

// Encapsulation of data by accessor methods and mutators
class Point {

private double x;
private double y;

public Point(double x, double y) {
this.x = x;
this.y = y;

}

public double getX() { return x; }
public double getY() { return y; }

public void setX(double x) { this.x = x; }
public void setY(double y) { this.y = y; }

}

Certainly, the hard-liners are correct when it comes to public classes: if a class
is accessible outside its package, provide accessor methods, to preserve the
flexibility to change the class’s internal representation. If a public class exposes its
data fields, all hope of changing its representation is lost, as client code can be dis-
tributed far and wide.

However, if a class is package-private or is a private nested class, there is
nothing inherently wrong with exposing its data fields—assuming they do an

CHAPTER 4 CLASSES AND INTERFACES72

adequate job of describing the abstraction provided by the class. This approach
generates less visual clutter than the accessor-method approach, both in the class
definition and in the client code that uses it. While the client code is tied to the
class’s internal representation, this code is confined to the package containing the
class. If a change in representation becomes desirable, you can make the change
without touching any code outside the package. In the case of a private nested
class, the scope of the change is further restricted to the enclosing class.

Several classes in the Java platform libraries violate the advice that public
classes should not expose fields directly. Prominent examples include the Point
and Dimension classes in the java.awt package. Rather than examples to be emu-
lated, these classes should be regarded as cautionary tales. As described in Item
55, the decision to expose the internals of the Dimension class resulted in a seri-
ous performance problem that is still with us today.

While it’s never a good idea for a public class to expose fields directly, it is
less harmful if the fields are immutable. You can’t change the representation of
such a class without changing its API, and you can’t take auxiliary actions when a
field is read, but you can enforce invariants. For example, this class guarantees
that each instance represents a valid time:

// Public class with exposed immutable fields - questionable
public final class Time {

private static final int HOURS_PER_DAY = 24;
private static final int MINUTES_PER_HOUR = 60;

public final int hour;
public final int minute;

public Time(int hour, int minute) {
if (hour < 0 || hour >= HOURS_PER_DAY)

throw new IllegalArgumentException("Hour: " + hour);
if (minute < 0 || minute >= MINUTES_PER_HOUR)

throw new IllegalArgumentException("Min: " + minute);
this.hour = hour;
this.minute = minute;

}
... // Remainder omitted

}

In summary, public classes should never expose mutable fields. It is less
harmful, though still questionable, for public classes to expose immutable fields.
It is, however, sometimes desirable for package-private or private nested classes to
expose fields, whether mutable or immutable.

ITEM 15: MINIMIZE MUTABILITY 73

Item 15: Minimize mutability

An immutable class is simply a class whose instances cannot be modified. All of
the information contained in each instance is provided when it is created and is
fixed for the lifetime of the object. The Java platform libraries contain many
immutable classes, including String, the boxed primitive classes, and BigInte-
ger and BigDecimal. There are many good reasons for this: Immutable classes
are easier to design, implement, and use than mutable classes. They are less prone
to error and are more secure.

To make a class immutable, follow these five rules:

1. Don’t provide any methods that modify the object’s state (known as muta-
tors).

2. Ensure that the class can’t be extended. This prevents careless or malicious
subclasses from compromising the immutable behavior of the class by behav-
ing as if the object’s state has changed. Preventing subclassing is generally ac-
complished by making the class final, but there is an alternative that we’ll
discuss later.

3. Make all fields final. This clearly expresses your intent in a manner that is en-
forced by the system. Also, it is necessary to ensure correct behavior if a refer-
ence to a newly created instance is passed from one thread to another without
synchronization, as spelled out in the memory model [JLS, 17.5; Goetz06 16].

4. Make all fields private. This prevents clients from obtaining access to muta-
ble objects referred to by fields and modifying these objects directly. While it
is technically permissible for immutable classes to have public final fields con-
taining primitive values or references to immutable objects, it is not recom-
mended because it precludes changing the internal representation in a later
release (Item 13).

5. Ensure exclusive access to any mutable components. If your class has any
fields that refer to mutable objects, ensure that clients of the class cannot obtain
references to these objects. Never initialize such a field to a client-provided ob-
ject reference or return the object reference from an accessor. Make defensive
copies (Item 39) in constructors, accessors, and readObject methods (Item
76).

CHAPTER 4 CLASSES AND INTERFACES74

Many of the example classes in previous items are immutable. One such class
is PhoneNumber in Item 9, which has accessors for each attribute but no corre-
sponding mutators. Here is a slightly more complex example:

public final class Complex {
private final double re;
private final double im;

public Complex(double re, double im) {
this.re = re;
this.im = im;

}

// Accessors with no corresponding mutators
public double realPart() { return re; }
public double imaginaryPart() { return im; }

public Complex add(Complex c) {
return new Complex(re + c.re, im + c.im);

}

public Complex subtract(Complex c) {
return new Complex(re - c.re, im - c.im);

}

public Complex multiply(Complex c) {
return new Complex(re * c.re - im * c.im,

re * c.im + im * c.re);
}

public Complex divide(Complex c) {
double tmp = c.re * c.re + c.im * c.im;
return new Complex((re * c.re + im * c.im) / tmp,

(im * c.re - re * c.im) / tmp);
}

@Override public boolean equals(Object o) {
if (o == this)

return true;
if (!(o instanceof Complex))

return false;
Complex c = (Complex) o;

// See page 43 to find out why we use compare instead of ==
return Double.compare(re, c.re) == 0 &&

Double.compare(im, c.im) == 0;
}

ITEM 15: MINIMIZE MUTABILITY 75

@Override public int hashCode() {
int result = 17 + hashDouble(re);
result = 31 * result + hashDouble(im);
return result;

}

private int hashDouble(double val) {
long longBits = Double.doubleToLongBits(re);
return (int) (longBits ^ (longBits >>> 32));

}

@Override public String toString() {
return "(" + re + " + " + im + "i)";

}
}

This class represents a complex number (a number with both real and imagi-
nary parts). In addition to the standard Object methods, it provides accessors for
the real and imaginary parts and provides the four basic arithmetic operations:
addition, subtraction, multiplication, and division. Notice how the arithmetic
operations create and return a new Complex instance rather than modifying this
instance. This pattern is used in most nontrivial immutable classes. It is known as
the functional approach because methods return the result of applying a function
to their operand without modifying it. Contrast this to the more common proce-
dural or imperative approach in which methods apply a procedure to their oper-
and, causing its state to change.

The functional approach may appear unnatural if you’re not familiar with it,
but it enables immutability, which has many advantages. Immutable objects are
simple. An immutable object can be in exactly one state, the state in which it was
created. If you make sure that all constructors establish class invariants, then it is
guaranteed that these invariants will remain true for all time, with no further effort
on your part or on the part of the programmer who uses the class. Mutable objects,
on the other hand, can have arbitrarily complex state spaces. If the documentation
does not provide a precise description of the state transitions performed by muta-
tor methods, it can be difficult or impossible to use a mutable class reliably.

Immutable objects are inherently thread-safe; they require no synchroni-
zation. They cannot be corrupted by multiple threads accessing them concur-
rently. This is far and away the easiest approach to achieving thread safety. In fact,
no thread can ever observe any effect of another thread on an immutable object.
Therefore, immutable objects can be shared freely. Immutable classes should
take advantage of this by encouraging clients to reuse existing instances wherever

CHAPTER 4 CLASSES AND INTERFACES76

possible. One easy way to do this is to provide public static final constants for fre-
quently used values. For example, the Complex class might provide these con-
stants:

public static final Complex ZERO = new Complex(0, 0);
public static final Complex ONE = new Complex(1, 0);
public static final Complex I = new Complex(0, 1);

This approach can be taken one step further. An immutable class can provide
static factories (Item 1) that cache frequently requested instances to avoid creating
new instances when existing ones would do. All the boxed primitive classes and
BigInteger do this. Using such static factories causes clients to share instances
instead of creating new ones, reducing memory footprint and garbage collection
costs. Opting for static factories in place of public constructors when designing a
new class gives you the flexibility to add caching later, without modifying clients.

A consequence of the fact that immutable objects can be shared freely is that
you never have to make defensive copies (Item 39). In fact, you never have to
make any copies at all because the copies would be forever equivalent to the orig-
inals. Therefore, you need not and should not provide a clone method or copy
constructor (Item 11) on an immutable class. This was not well understood in the
early days of the Java platform, so the String class does have a copy constructor,
but it should rarely, if ever, be used (Item 5).

Not only can you share immutable objects, but you can share their inter-
nals. For example, the BigInteger class uses a sign-magnitude representation
internally. The sign is represented by an int, and the magnitude is represented by
an int array. The negate method produces a new BigInteger of like magnitude
and opposite sign. It does not need to copy the array; the newly created BigInte-
ger points to the same internal array as the original.

Immutable objects make great building blocks for other objects, whether
mutable or immutable. It’s much easier to maintain the invariants of a complex
object if you know that its component objects will not change underneath it. A
special case of this principle is that immutable objects make great map keys and
set elements: you don’t have to worry about their values changing once they’re in
the map or set, which would destroy the map or set’s invariants.

The only real disadvantage of immutable classes is that they require a
separate object for each distinct value. Creating these objects can be costly,
especially if they are large. For example, suppose that you have a million-bit Big-
Integer and you want to change its low-order bit:

ITEM 15: MINIMIZE MUTABILITY 77

BigInteger moby = ...;
moby = moby.flipBit(0);

The flipBit method creates a new BigInteger instance, also a million bits long,
that differs from the original in only one bit. The operation requires time and
space proportional to the size of the BigInteger. Contrast this to
java.util.BitSet. Like BigInteger, BitSet represents an arbitrarily long
sequence of bits, but unlike BigInteger, BitSet is mutable. The BitSet class
provides a method that allows you to change the state of a single bit of a million-
bit instance in constant time.

The performance problem is magnified if you perform a multistep operation
that generates a new object at every step, eventually discarding all objects except
the final result. There are two approaches to coping with this problem. The first is
to guess which multistep operations will be commonly required and provide them
as primitives. If a multistep operation is provided as a primitive, the immutable
class does not have to create a separate object at each step. Internally, the immuta-
ble class can be arbitrarily clever. For example, BigInteger has a package-private
mutable “companion class” that it uses to speed up multistep operations such as
modular exponentiation. It is much harder to use the mutable companion class
than to use BigInteger for all of the reasons outlined earlier, but luckily you
don’t have to: the implementors of BigInteger did the hard work for you.

The package-private mutable companion class approach works fine if you can
accurately predict which complex multistage operations clients will want to
perform on your immutable class. If not, then your best bet is to provide a public
mutable companion class. The main example of this approach in the Java platform
libraries is the String class, whose mutable companion is StringBuilder (and
the largely obsolete StringBuffer). Arguably, BitSet plays the role of mutable
companion to BigInteger under certain circumstances.

Now that you know how to make an immutable class and you understand the
pros and cons of immutability, let’s discuss a few design alternatives. Recall that
to guarantee immutability, a class must not permit itself to be subclassed.
Typically this is done by making the class final, but there is another, more flexible
way to do it. The alternative to making an immutable class final is to make all of
its constructors private or package-private, and to add public static factories in
place of the public constructors (Item 1).

CHAPTER 4 CLASSES AND INTERFACES78

To make this concrete, here’s how Complex would look if you took this
approach:

// Immutable class with static factories instead of constructors
public class Complex {

private final double re;
private final double im;

private Complex(double re, double im) {
this.re = re;
this.im = im;

}

public static Complex valueOf(double re, double im) {
return new Complex(re, im);

}

... // Remainder unchanged
}

While this approach is not commonly used, it is often the best alternative. It is
the most flexible because it allows the use of multiple package-private implemen-
tation classes. To its clients that reside outside its package, the immutable class is
effectively final because it is impossible to extend a class that comes from another
package and that lacks a public or protected constructor. Besides allowing the
flexibility of multiple implementation classes, this approach makes it possible to
tune the performance of the class in subsequent releases by improving the object-
caching capabilities of the static factories.

Static factories have many other advantages over constructors, as discussed in
Item 1. For example, suppose that you want to provide a means of creating a com-
plex number based on its polar coordinates. This would be very messy using con-
structors because the natural constructor would have the same signature that we
already used: Complex(double, double). With static factories it’s easy. Just add
a second static factory with a name that clearly identifies its function:

public static Complex valueOfPolar(double r, double theta) {
return new Complex(r * Math.cos(theta),

r * Math.sin(theta));
}

It was not widely understood that immutable classes had to be effectively final
when BigInteger and BigDecimal were written, so all of their methods may be

ITEM 15: MINIMIZE MUTABILITY 79

overridden. Unfortunately, this could not be corrected after the fact while preserv-
ing backward compatibility. If you write a class whose security depends on the
immutability of a BigInteger or BigDecimal argument from an untrusted client,
you must check to see that the argument is a “real” BigInteger or BigDecimal,
rather than an instance of an untrusted subclass. If it is the latter, you must defen-
sively copy it under the assumption that it might be mutable (Item 39):

public static BigInteger safeInstance(BigInteger val) {
if (val.getClass() != BigInteger.class)

return new BigInteger(val.toByteArray());
return val;

}

The list of rules for immutable classes at the beginning of this item says that
no methods may modify the object and that all its fields must be final. In fact these
rules are a bit stronger than necessary and can be relaxed to improve performance.
In truth, no method may produce an externally visible change in the object’s state.
However, some immutable classes have one or more nonfinal fields in which they
cache the results of expensive computations the first time they are needed. If the
same value is requested again, the cached value is returned, saving the cost of
recalculation. This trick works precisely because the object is immutable, which
guarantees that the computation would yield the same result if it were repeated.

For example, PhoneNumber’s hashCode method (Item 9, page 49) computes
the hash code the first time it’s invoked and caches it in case it’s invoked again.
This technique, an example of lazy initialization (Item 71), is also used by
String.

One caveat should be added concerning serializability. If you choose to have
your immutable class implement Serializable and it contains one or more fields
that refer to mutable objects, you must provide an explicit readObject or
readResolve method, or use the ObjectOutputStream.writeUnshared and
ObjectInputStream.readUnshared methods, even if the default serialized form
is acceptable. Otherwise an attacker could create a mutable instance of your not-
quite-immutable class. This topic is covered in detail in Item 76.

To summarize, resist the urge to write a set method for every get method.
Classes should be immutable unless there’s a very good reason to make them
mutable. Immutable classes provide many advantages, and their only disadvan-
tage is the potential for performance problems under certain circumstances. You
should always make small value objects, such as PhoneNumber and Complex,
immutable. (There are several classes in the Java platform libraries, such as

CHAPTER 4 CLASSES AND INTERFACES80

java.util.Date and java.awt.Point, that should have been immutable but
aren’t.) You should seriously consider making larger value objects, such as
String and BigInteger, immutable as well. You should provide a public mutable
companion class for your immutable class only once you’ve confirmed that it’s
necessary to achieve satisfactory performance (Item 55).

There are some classes for which immutability is impractical. If a class can-
not be made immutable, limit its mutability as much as possible. Reducing the
number of states in which an object can exist makes it easier to reason about the
object and reduces the likelihood of errors. Therefore, make every field final
unless there is a compelling reason to make it nonfinal.

Constructors should create fully initialized objects with all of their invariants
established. Don’t provide a public initialization method separate from the con-
structor or static factory unless there is a compelling reason to do so. Similarly,
don’t provide a “reinitialize” method that enables an object to be reused as if it
had been constructed with a different initial state. Such methods generally provide
little if any performance benefit at the expense of increased complexity.

The TimerTask class exemplifies these principles. It is mutable, but its state
space is kept intentionally small. You create an instance, schedule it for execution,
and optionally cancel it. Once a timer task has run to completion or has been can-
celed, you may not reschedule it.

A final note should be added concerning the Complex class in this item. This
example was meant only to illustrate immutability. It is not an industrial-strength
complex number implementation. It uses the standard formulas for complex
multiplication and division, which are not correctly rounded and provide poor
semantics for complex NaNs and infinities [Kahan91, Smith62, Thomas94].

ITEM 16: FAVOR COMPOSITION OVER INHERITANCE 81

Item 16: Favor composition over inheritance

Inheritance is a powerful way to achieve code reuse, but it is not always the best
tool for the job. Used inappropriately, it leads to fragile software. It is safe to use
inheritance within a package, where the subclass and the superclass implementa-
tions are under the control of the same programmers. It is also safe to use inherit-
ance when extending classes specifically designed and documented for extension
(Item 17). Inheriting from ordinary concrete classes across package boundaries,
however, is dangerous. As a reminder, this book uses the word “inheritance” to
mean implementation inheritance (when one class extends another). The problems
discussed in this item do not apply to interface inheritance (when a class imple-
ments an interface or where one interface extends another).

Unlike method invocation, inheritance violates encapsulation [Snyder86].
In other words, a subclass depends on the implementation details of its superclass
for its proper function. The superclass’s implementation may change from release
to release, and if it does, the subclass may break, even though its code has not
been touched. As a consequence, a subclass must evolve in tandem with its super-
class, unless the superclass’s authors have designed and documented it specifi-
cally for the purpose of being extended.

To make this concrete, let’s suppose we have a program that uses a HashSet.
To tune the performance of our program, we need to query the HashSet as to how
many elements have been added since it was created (not to be confused with its
current size, which goes down when an element is removed). To provide this func-
tionality, we write a HashSet variant that keeps count of the number of attempted
element insertions and exports an accessor for this count. The HashSet class con-
tains two methods capable of adding elements, add and addAll, so we override
both of these methods:

// Broken - Inappropriate use of inheritance!
public class InstrumentedHashSet<E> extends HashSet<E> {

// The number of attempted element insertions
private int addCount = 0;

public InstrumentedHashSet() {
}

public InstrumentedHashSet(int initCap, float loadFactor) {
super(initCap, loadFactor);

}

CHAPTER 4 CLASSES AND INTERFACES82

@Override public boolean add(E e) {
addCount++;
return super.add(e);

}
@Override public boolean addAll(Collection<? extends E> c) {

addCount += c.size();
return super.addAll(c);

}
public int getAddCount() {

return addCount;
}

}

This class looks reasonable, but it doesn’t work. Suppose we create an
instance and add three elements using the addAll method:

InstrumentedHashSet<String> s =
new InstrumentedHashSet<String>();

s.addAll(Arrays.asList("Snap", "Crackle", "Pop"));

We would expect the getAddCount method to return three at this point, but it
returns six. What went wrong? Internally, HashSet’s addAll method is imple-
mented on top of its add method, although HashSet, quite reasonably, does not
document this implementation detail. The addAll method in InstrumentedHash-
Set added three to addCount and then invoked HashSet’s addAll implementation
using super.addAll. This in turn invoked the add method, as overridden in
InstrumentedHashSet, once for each element. Each of these three invocations
added one more to addCount, for a total increase of six: each element added with
the addAll method is double-counted.

We could “fix” the subclass by eliminating its override of the addAll method.
While the resulting class would work, it would depend for its proper function on
the fact that HashSet’s addAll method is implemented on top of its add method.
This “self-use” is an implementation detail, not guaranteed to hold in all imple-
mentations of the Java platform and subject to change from release to release.
Therefore, the resulting InstrumentedHashSet class would be fragile.

It would be slightly better to override the addAll method to iterate over the
specified collection, calling the add method once for each element. This would
guarantee the correct result whether or not HashSet’s addAll method were
implemented atop its add method, because HashSet’s addAll implementation
would no longer be invoked. This technique, however, does not solve all our
problems. It amounts to reimplementing superclass methods that may or may not

ITEM 16: FAVOR COMPOSITION OVER INHERITANCE 83

result in self-use, which is difficult, time-consuming, and error-prone.
Additionally, it isn’t always possible, as some methods cannot be implemented
without access to private fields inaccessible to the subclass.

A related cause of fragility in subclasses is that their superclass can acquire
new methods in subsequent releases. Suppose a program depends for its security
on the fact that all elements inserted into some collection satisfy some predicate.
This can be guaranteed by subclassing the collection and overriding each method
capable of adding an element to ensure that the predicate is satisfied before adding
the element. This works fine until a new method capable of inserting an element is
added to the superclass in a subsequent release. Once this happens, it becomes
possible to add an “illegal” element merely by invoking the new method, which is
not overridden in the subclass. This is not a purely theoretical problem. Several
security holes of this nature had to be fixed when Hashtable and Vector were ret-
rofitted to participate in the Collections Framework.

Both of the above problems stem from overriding methods. You might think
that it is safe to extend a class if you merely add new methods and refrain from
overriding existing methods. While this sort of extension is much safer, it is not
without risk. If the superclass acquires a new method in a subsequent release and
you have the bad luck to have given the subclass a method with the same signature
and a different return type, your subclass will no longer compile [JLS, 8.4.8.3]. If
you’ve given the subclass a method with the same signature and return type as the
new superclass method, then you’re now overriding it, so you’re subject to the two
problems described above. Furthermore, it is doubtful that your method will fulfill
the contract of the new superclass method, as that contract had not yet been writ-
ten when you wrote the subclass method.

Luckily, there is a way to avoid all of the problems described earlier. Instead
of extending an existing class, give your new class a private field that references
an instance of the existing class. This design is called composition because the
existing class becomes a component of the new one. Each instance method in the
new class invokes the corresponding method on the contained instance of the
existing class and returns the results. This is known as forwarding, and the meth-
ods in the new class are known as forwarding methods. The resulting class will be
rock solid, with no dependencies on the implementation details of the existing
class. Even adding new methods to the existing class will have no impact on the
new class. To make this concrete, here’s a replacement for InstrumentedHashSet
that uses the composition-and-forwarding approach. Note that the implementation
is broken into two pieces, the class itself and a reusable forwarding class, which
contains all of the forwarding methods and nothing else:

CHAPTER 4 CLASSES AND INTERFACES84

// Wrapper class - uses composition in place of inheritance
public class InstrumentedSet<E> extends ForwardingSet<E> {
 private int addCount = 0;

 public InstrumentedSet(Set<E> s) {
 super(s);
 }

 @Override public boolean add(E e) {
 addCount++;
 return super.add(e);
 }
 @Override public boolean addAll(Collection<? extends E> c) {
 addCount += c.size();
 return super.addAll(c);
 }
 public int getAddCount() {
 return addCount;
 }
}

// Reusable forwarding class
public class ForwardingSet<E> implements Set<E> {
 private final Set<E> s;
 public ForwardingSet(Set<E> s) { this.s = s; }

 public void clear() { s.clear(); }
 public boolean contains(Object o) { return s.contains(o); }
 public boolean isEmpty() { return s.isEmpty(); }
 public int size() { return s.size(); }
 public Iterator<E> iterator() { return s.iterator(); }
 public boolean add(E e) { return s.add(e); }
 public boolean remove(Object o) { return s.remove(o); }
 public boolean containsAll(Collection<?> c)
 { return s.containsAll(c); }
 public boolean addAll(Collection<? extends E> c)
 { return s.addAll(c); }
 public boolean removeAll(Collection<?> c)
 { return s.removeAll(c); }
 public boolean retainAll(Collection<?> c)
 { return s.retainAll(c); }
 public Object[] toArray() { return s.toArray(); }
 public <T> T[] toArray(T[] a) { return s.toArray(a); }
 @Override public boolean equals(Object o)
 { return s.equals(o); }
 @Override public int hashCode() { return s.hashCode(); }
 @Override public String toString() { return s.toString(); }
}

ITEM 16: FAVOR COMPOSITION OVER INHERITANCE 85

The design of the InstrumentedSet class is enabled by the existence of the
Set interface, which captures the functionality of the HashSet class. Besides
being robust, this design is extremely flexible. The InstrumentedSet class imple-
ments the Set interface and has a single constructor whose argument is also of
type Set. In essence, the class transforms one Set into another, adding the instru-
mentation functionality. Unlike the inheritance-based approach, which works only
for a single concrete class and requires a separate constructor for each supported
constructor in the superclass, the wrapper class can be used to instrument any Set
implementation and will work in conjunction with any preexisting constructor:

Set<Date> s = new InstrumentedSet<Date>(new TreeSet<Date>(cmp));
Set<E> s2 = new InstrumentedSet<E>(new HashSet<E>(capacity));

The InstrumentedSet class can even be used to temporarily instrument a set
instance that has already been used without instrumentation:

static void walk(Set<Dog> dogs) {
InstrumentedSet<Dog> iDogs = new InstrumentedSet<Dog>(dogs);
... // Within this method use iDogs instead of dogs

}

The InstrumentedSet class is known as a wrapper class because each
InstrumentedSet instance contains (“wraps”) another Set instance. This is also
known as the Decorator pattern [Gamma95, p. 175], because the Instrumented-
Set class “decorates” a set by adding instrumentation. Sometimes the combina-
tion of composition and forwarding is loosely referred to as delegation.
Technically it’s not delegation unless the wrapper object passes itself to the
wrapped object [Lieberman86; Gamma95, p. 20].

The disadvantages of wrapper classes are few. One caveat is that wrapper
classes are not suited for use in callback frameworks, wherein objects pass self-
references to other objects for subsequent invocations (“callbacks”). Because a
wrapped object doesn’t know of its wrapper, it passes a reference to itself (this)
and callbacks elude the wrapper. This is known as the SELF problem
[Lieberman86]. Some people worry about the performance impact of forwarding
method invocations or the memory footprint impact of wrapper objects. Neither
turn out to have much impact in practice. It’s tedious to write forwarding methods,
but you have to write the forwarding class for each interface only once, and for-
warding classes may be provided for you by the package containing the interface.

Inheritance is appropriate only in circumstances where the subclass really is a
subtype of the superclass. In other words, a class B should extend a class A only if

CHAPTER 4 CLASSES AND INTERFACES86

an “is-a” relationship exists between the two classes. If you are tempted to have a
class B extend a class A, ask yourself the question: Is every B really an A? If you
cannot truthfully answer yes to this question, B should not extend A. If the answer
is no, it is often the case that B should contain a private instance of A and expose a
smaller and simpler API: A is not an essential part of B, merely a detail of its
implementation.

There are a number of obvious violations of this principle in the Java platform
libraries. For example, a stack is not a vector, so Stack should not extend Vector.
Similarly, a property list is not a hash table, so Properties should not extend
Hashtable. In both cases, composition would have been preferable.

If you use inheritance where composition is appropriate, you needlessly
expose implementation details. The resulting API ties you to the original imple-
mentation, forever limiting the performance of your class. More seriously, by
exposing the internals you let the client access them directly. At the very least, this
can lead to confusing semantics. For example, if p refers to a Properties
instance, then p.getProperty(key) may yield different results from
p.get(key): the former method takes defaults into account, while the latter
method, which is inherited from Hashtable, does not. Most seriously, the client
may be able to corrupt invariants of the subclass by modifying the superclass
directly. In the case of Properties, the designers intended that only strings be
allowed as keys and values, but direct access to the underlying Hashtable allows
this invariant to be violated. Once this invariant is violated, it is no longer possible
to use other parts of the Properties API (load and store). By the time this prob-
lem was discovered, it was too late to correct it because clients depended on the
use of nonstring keys and values.

There is one last set of questions you should ask yourself before deciding to
use inheritance in place of composition. Does the class that you contemplate
extending have any flaws in its API? If so, are you comfortable propagating those
flaws into your class’s API? Inheritance propagates any flaws in the superclass’s
API, while composition lets you design a new API that hides these flaws.

To summarize, inheritance is powerful, but it is problematic because it
violates encapsulation. It is appropriate only when a genuine subtype relationship
exists between the subclass and the superclass. Even then, inheritance may lead to
fragility if the subclass is in a different package from the superclass and the
superclass is not designed for inheritance. To avoid this fragility, use composition
and forwarding instead of inheritance, especially if an appropriate interface to
implement a wrapper class exists. Not only are wrapper classes more robust than
subclasses, they are also more powerful.

ITEM 17: DESIGN AND DOCUMENT FOR INHERITANCE OR ELSE PROHIBIT IT 87

Item 17: Design and document for inheritance or else prohibit it

Item 16 alerted you to the dangers of subclassing a “foreign” class that was not
designed and documented for inheritance. So what does it mean for a class to be
designed and documented for inheritance?

First, the class must document precisely the effects of overriding any method.
In other words, the class must document its self-use of overridable methods.
For each public or protected method or constructor, the documentation must
indicate which overridable methods the method or constructor invokes, in what
sequence, and how the results of each invocation affect subsequent processing.
(By overridable, we mean nonfinal and either public or protected.) More
generally, a class must document any circumstances under which it might invoke
an overridable method. For example, invocations might come from background
threads or static initializers.

By convention, a method that invokes overridable methods contains a descrip-
tion of these invocations at the end of its documentation comment. The descrip-
tion begins with the phrase “This implementation.” This phrase should not be
taken to indicate that the behavior may change from release to release. It connotes
that the description concerns the inner workings of the method. Here’s an exam-
ple, copied from the specification for java.util.AbstractCollection:

public boolean remove(Object o)

Removes a single instance of the specified element from this collection, if it
is present (optional operation). More formally, removes an element e such
that (o==null ? e==null : o.equals(e)), if the collection contains one or
more such elements. Returns true if the collection contained the specified
element (or equivalently, if the collection changed as a result of the call).

This implementation iterates over the collection looking for the specified el-
ement. If it finds the element, it removes the element from the collection us-
ing the iterator’s remove method. Note that this implementation throws an
UnsupportedOperationException if the iterator returned by this collec-
tion’s iterator method does not implement the remove method.

This documentation leaves no doubt that overriding the iterator method will
affect the behavior of the remove method. Furthermore, it describes exactly how
the behavior of the Iterator returned by the iterator method will affect the
behavior of the remove method. Contrast this to the situation in Item 16, where the

CHAPTER 4 CLASSES AND INTERFACES88

programmer subclassing HashSet simply could not say whether overriding the
add method would affect the behavior of the addAll method.

But doesn’t this violate the dictum that good API documentation should
describe what a given method does and not how it does it? Yes, it does! This is an
unfortunate consequence of the fact that inheritance violates encapsulation. To
document a class so that it can be safely subclassed, you must describe implemen-
tation details that should otherwise be left unspecified.

Design for inheritance involves more than just documenting patterns of self-
use. To allow programmers to write efficient subclasses without undue pain, a
class may have to provide hooks into its internal workings in the form of judi-
ciously chosen protected methods or, in rare instances, protected fields. For
example, consider the removeRange method from java.util.AbstractList:

protected void removeRange(int fromIndex, int toIndex)

Removes from this list all of the elements whose index is between
fromIndex, inclusive, and toIndex, exclusive. Shifts any succeeding
elements to the left (reduces their index). This call shortens the ArrayList
by (toIndex - fromIndex) elements. (If toIndex == fromIndex, this
operation has no effect.)

This method is called by the clear operation on this list and its sublists.
Overriding this method to take advantage of the internals of the list imple-
mentation can substantially improve the performance of the clear operation
on this list and its sublists.

This implementation gets a list iterator positioned before fromIndex and re-
peatedly calls ListIterator.next followed by ListIterator.remove, un-
til the entire range has been removed. Note: If ListIterator.remove
requires linear time, this implementation requires quadratic time.

Parameters:

fromIndex index of first element to be removed.

toIndex index after last element to be removed.

This method is of no interest to end users of a List implementation. It is
provided solely to make it easy for subclasses to provide a fast clear method on
sublists. In the absence of the removeRange method, subclasses would have to
make do with quadratic performance when the clear method was invoked on
sublists or rewrite the entire subList mechanism from scratch—not an easy task!

ITEM 17: DESIGN AND DOCUMENT FOR INHERITANCE OR ELSE PROHIBIT IT 89

So how do you decide what protected members to expose when you design a
class for inheritance? Unfortunately, there is no magic bullet. The best you can do
is to think hard, take your best guess, and then test it by writing subclasses. You
should expose as few protected members as possible, because each one represents
a commitment to an implementation detail. On the other hand, you must not
expose too few, as a missing protected member can render a class practically
unusable for inheritance.

The only way to test a class designed for inheritance is to write subclasses.
If you omit a crucial protected member, trying to write a subclass will make the
omission painfully obvious. Conversely, if several subclasses are written and none
uses a protected member, you should probably make it private. Experience shows
that three subclasses are usually sufficient to test an extendable class. One or more
of these subclasses should be written by someone other than the superclass author.

When you design for inheritance a class that is likely to achieve wide use,
realize that you are committing forever to the self-use patterns that you document
and to the implementation decisions implicit in its protected methods and fields.
These commitments can make it difficult or impossible to improve the perfor-
mance or functionality of the class in a subsequent release. Therefore, you must
test your class by writing subclasses before you release it.

Also, note that the special documentation required for inheritance clutters up
normal documentation, which is designed for programmers who create instances
of your class and invoke methods on them. As of this writing, there is little in the
way of tools or commenting conventions to separate ordinary API documentation
from information of interest only to programmers implementing subclasses.

There are a few more restrictions that a class must obey to allow inheritance.
Constructors must not invoke overridable methods, directly or indirectly. If
you violate this rule, program failure will result. The superclass constructor runs
before the subclass constructor, so the overriding method in the subclass will get
invoked before the subclass constructor has run. If the overriding method depends
on any initialization performed by the subclass constructor, the method will not
behave as expected. To make this concrete, here’s a class that violates this rule:

public class Super {
// Broken - constructor invokes an overridable method
public Super() {

overrideMe();
}
public void overrideMe() {
}

}

CHAPTER 4 CLASSES AND INTERFACES90

Here’s a subclass that overrides the overrideMe, method which is erroneously
invoked by Super’s sole constructor:

public final class Sub extends Super {
private final Date date; // Blank final, set by constructor

Sub() {
date = new Date();

}

// Overriding method invoked by superclass constructor
@Override public void overrideMe() {

System.out.println(date);
}

public static void main(String[] args) {
Sub sub = new Sub();
sub.overrideMe();

}
}

You might expect this program to print out the date twice, but it prints out null
the first time, because the overrideMe method is invoked by the Super construc-
tor before the Sub constructor has a chance to initialize the date field. Note that
this program observes a final field in two different states! Note also that if over-
rideMe had invoked any method on date, the invocation would have thrown a
NullPointerException when the Super constructor invoked overrideMe. The
only reason this program doesn’t throw a NullPointerException as it stands is
that the println method has special provisions for dealing with a null argument.

The Cloneable and Serializable interfaces present special difficulties
when designing for inheritance. It is generally not a good idea for a class designed
for inheritance to implement either of these interfaces, as they place a substantial
burden on programmers who extend the class. There are, however, special actions
that you can take to allow subclasses to implement these interfaces without man-
dating that they do so. These actions are described in Item 11 and Item 74.

If you do decide to implement Cloneable or Serializable in a class
designed for inheritance, you should be aware that because the clone and
readObject methods behave a lot like constructors, a similar restriction applies:
neither clone nor readObject may invoke an overridable method, directly or
indirectly. In the case of the readObject method, the overriding method will run
before the subclass’s state has been deserialized. In the case of the clone method,
the overriding method will run before the subclass’s clone method has a chance to

ITEM 17: DESIGN AND DOCUMENT FOR INHERITANCE OR ELSE PROHIBIT IT 91

fix the clone’s state. In either case, a program failure is likely to follow. In the case
of clone, the failure can damage the original object as well as the clone. This can
happen, for example, if the overriding method assumes it is modifying the clone’s
copy of the object’s deep structure, but the copy hasn’t been made yet.

Finally, if you decide to implement Serializable in a class designed for
inheritance and the class has a readResolve or writeReplace method, you must
make the readResolve or writeReplace method protected rather than private. If
these methods are private, they will be silently ignored by subclasses. This is one
more case where an implementation detail becomes part of a class’s API to permit
inheritance.

By now it should be apparent that designing a class for inheritance places
substantial limitations on the class. This is not a decision to be undertaken
lightly. There are some situations where it is clearly the right thing to do, such as
abstract classes, including skeletal implementations of interfaces (Item 18). There
are other situations where it is clearly the wrong thing to do, such as immutable
classes (Item 15).

But what about ordinary concrete classes? Traditionally, they are neither final
nor designed and documented for subclassing, but this state of affairs is danger-
ous. Each time a change is made in such a class, there is a chance that client
classes that extend the class will break. This is not just a theoretical problem. It is
not uncommon to receive subclassing-related bug reports after modifying the
internals of a nonfinal concrete class that was not designed and documented for
inheritance.

The best solution to this problem is to prohibit subclassing in classes that
are not designed and documented to be safely subclassed. There are two ways
to prohibit subclassing. The easier of the two is to declare the class final. The
alternative is to make all the constructors private or package-private and to add
public static factories in place of the constructors. This alternative, which pro-
vides the flexibility to use subclasses internally, is discussed in Item 15. Either
approach is acceptable.

This advice may be somewhat controversial, as many programmers have
grown accustomed to subclassing ordinary concrete classes to add facilities such
as instrumentation, notification, and synchronization or to limit functionality. If a
class implements some interface that captures its essence, such as Set, List, or
Map, then you should feel no compunction about prohibiting subclassing. The
wrapper class pattern, described in Item 16, provides a superior alternative to
inheritance for augmenting the functionality.

CHAPTER 4 CLASSES AND INTERFACES92

If a concrete class does not implement a standard interface, then you may
inconvenience some programmers by prohibiting inheritance. If you feel that you
must allow inheritance from such a class, one reasonable approach is to ensure
that the class never invokes any of its overridable methods and to document this
fact. In other words, eliminate the class’s self-use of overridable methods entirely.
In doing so, you’ll create a class that is reasonably safe to subclass. Overriding a
method will never affect the behavior of any other method.

You can eliminate a class’s self-use of overridable methods mechanically,
without changing its behavior. Move the body of each overridable method to a pri-
vate “helper method” and have each overridable method invoke its private helper
method. Then replace each self-use of an overridable method with a direct invoca-
tion of the overridable method’s private helper method.

ITEM 18: PREFER INTERFACES TO ABSTRACT CLASSES 93

Item 18: Prefer interfaces to abstract classes

The Java programming language provides two mechanisms for defining a type
that permits multiple implementations: interfaces and abstract classes. The most
obvious difference between the two mechanisms is that abstract classes are per-
mitted to contain implementations for some methods while interfaces are not. A
more important difference is that to implement the type defined by an abstract
class, a class must be a subclass of the abstract class. Any class that defines all of
the required methods and obeys the general contract is permitted to implement an
interface, regardless of where the class resides in the class hierarchy. Because Java
permits only single inheritance, this restriction on abstract classes severely con-
strains their use as type definitions.

Existing classes can be easily retrofitted to implement a new interface. All
you have to do is add the required methods if they don’t yet exist and add an
implements clause to the class declaration. For example, many existing classes
were retrofitted to implement the Comparable interface when it was introduced
into the platform. Existing classes cannot, in general, be retrofitted to extend a
new abstract class. If you want to have two classes extend the same abstract class,
you have to place the abstract class high up in the type hierarchy where it
subclasses an ancestor of both classes. Unfortunately, this causes great collateral
damage to the type hierarchy, forcing all descendants of the common ancestor to
extend the new abstract class whether or not it is appropriate for them to do so.

Interfaces are ideal for defining mixins. Loosely speaking, a mixin is a type
that a class can implement in addition to its “primary type” to declare that it pro-
vides some optional behavior. For example, Comparable is a mixin interface that
allows a class to declare that its instances are ordered with respect to other mutu-
ally comparable objects. Such an interface is called a mixin because it allows the
optional functionality to be “mixed in” to the type’s primary functionality.
Abstract classes can’t be used to define mixins for the same reason that they can’t
be retrofitted onto existing classes: a class cannot have more than one parent, and
there is no reasonable place in the class hierarchy to insert a mixin.

Interfaces allow the construction of nonhierarchical type frameworks.
Type hierarchies are great for organizing some things, but other things don’t fall
neatly into a rigid hierarchy. For example, suppose we have an interface represent-
ing a singer and another representing a songwriter:

public interface Singer {
AudioClip sing(Song s);

}

CHAPTER 4 CLASSES AND INTERFACES94

public interface Songwriter {
Song compose(boolean hit);

}

In real life, some singers are also songwriters. Because we used interfaces
rather than abstract classes to define these types, it is perfectly permissible for a
single class to implement both Singer and Songwriter. In fact, we can define a
third interface that extends both Singer and Songwriter and adds new methods
that are appropriate to the combination:

public interface SingerSongwriter extends Singer, Songwriter {
AudioClip strum();
void actSensitive();

}

You don’t always need this level of flexibility, but when you do, interfaces are
a lifesaver. The alternative is a bloated class hierarchy containing a separate class
for every supported combination of attributes. If there are n attributes in the type
system, there are 2n possible combinations that you might have to support. This is
what’s known as a combinatorial explosion. Bloated class hierarchies can lead to
bloated classes containing many methods that differ only in the type of their argu-
ments, as there are no types in the class hierarchy to capture common behaviors.

Interfaces enable safe, powerful functionality enhancements via the wrap-
per class idiom, described in Item 16. If you use abstract classes to define types,
you leave the programmer who wants to add functionality with no alternative but
to use inheritance. The resulting classes are less powerful and more fragile than
wrapper classes.

While interfaces are not permitted to contain method implementations, using
interfaces to define types does not prevent you from providing implementation
assistance to programmers. You can combine the virtues of interfaces and
abstract classes by providing an abstract skeletal implementation class to go
with each nontrivial interface that you export. The interface still defines the
type, but the skeletal implementation takes all of the work out of implementing it.

By convention, skeletal implementations are called AbstractInterface, where
Interface is the name of the interface they implement. For example, the Collec-
tions Framework provides a skeletal implementation to go along with each main
collection interface: AbstractCollection, AbstractSet, AbstractList, and
AbstractMap. Arguably it would have made sense to call them SkeletalCollec-
tion, SkeletalSet, SkeletalList, and SkeletalMap, but the Abstract conven-
tion is now firmly established.

ITEM 18: PREFER INTERFACES TO ABSTRACT CLASSES 95

When properly designed, skeletal implementations can make it very easy for
programmers to provide their own implementations of your interfaces. For exam-
ple, here’s a static factory method containing a complete, fully functional List
implementation:

// Concrete implementation built atop skeletal implementation
static List<Integer> intArrayAsList(final int[] a) {

if (a == null)
throw new NullPointerException();

return new AbstractList<Integer>() {
public Integer get(int i) {

return a[i]; // Autoboxing (Item 5)
}

@Override public Integer set(int i, Integer val) {
int oldVal = a[i];
a[i] = val; // Auto-unboxing
return oldVal; // Autoboxing

}

public int size() {
return a.length;

}
};

}

When you consider all that a List implementation does for you, this example
is an impressive demonstration of the power of skeletal implementations. Inciden-
tally, the example is an Adapter [Gamma95, p. 139] that allows an int array to be
viewed as a list of Integer instances. Because of all the translation back and forth
between int values and Integer instances (boxing and unboxing), its perfor-
mance is not terribly good. Note that a static factory is provided and that the class
is an inaccessible anonymous class (Item 22) hidden inside the static factory.

The beauty of skeletal implementations is that they provide the implementa-
tion assistance of abstract classes without imposing the severe constraints that
abstract classes impose when they serve as type definitions. For most implemen-
tors of an interface, extending the skeletal implementation is the obvious choice,
but it is strictly optional. If a preexisting class cannot be made to extend the skele-
tal implementation, the class can always implement the interface manually. Fur-
thermore, the skeletal implementation can still aid the implementor’s task. The
class implementing the interface can forward invocations of interface methods to a
contained instance of a private inner class that extends the skeletal implementa-

CHAPTER 4 CLASSES AND INTERFACES96

tion. This technique, known as simulated multiple inheritance, is closely related to
the wrapper class idiom discussed in Item 16. It provides most of the benefits of
multiple inheritance, while avoiding the pitfalls.

Writing a skeletal implementation is a relatively simple, if somewhat tedious,
process. First you must study the interface and decide which methods are the
primitives in terms of which the others can be implemented. These primitives will
be the abstract methods in your skeletal implementation. Then you must provide
concrete implementations of all the other methods in the interface. For example,
here’s a skeletal implementation of the Map.Entry interface:

// Skeletal Implementation
public abstract class AbstractMapEntry<K,V>

implements Map.Entry<K,V> {
// Primitive operations
public abstract K getKey();
public abstract V getValue();

// Entries in modifiable maps must override this method
public V setValue(V value) {

throw new UnsupportedOperationException();
}

// Implements the general contract of Map.Entry.equals
@Override public boolean equals(Object o) {

if (o == this)
return true;

if (! (o instanceof Map.Entry))
return false;

Map.Entry<?,?> arg = (Map.Entry) o;
return equals(getKey(), arg.getKey()) &&

equals(getValue(), arg.getValue());
}
private static boolean equals(Object o1, Object o2) {

return o1 == null ? o2 == null : o1.equals(o2);
}

// Implements the general contract of Map.Entry.hashCode
@Override public int hashCode() {

return hashCode(getKey()) ^ hashCode(getValue());
}
private static int hashCode(Object obj) {

return obj == null ? 0 : obj.hashCode();
}

}

ITEM 18: PREFER INTERFACES TO ABSTRACT CLASSES 97

Because skeletal implementations are designed for inheritance, you should
follow all of the design and documentation guidelines in Item 17. For brevity’s
sake, the documentation comments were omitted from the previous example, but
good documentation is absolutely essential for skeletal implementations.

A minor variant on the skeletal implementation is the simple implementation,
exemplified by AbstractMap.SimpleEntry. A simple implementation is like a
skeletal implementation in that it implements an interface and is designed for
inheritance, but it differs in that it isn’t abstract: it is the simplest possible working
implementation. You can use it as it stands or subclass it as circumstances warrant.

Using abstract classes to define types that permit multiple implementations
has one great advantage over using interfaces: It is far easier to evolve an
abstract class than an interface. If, in a subsequent release, you want to add a
new method to an abstract class, you can always add a concrete method containing
a reasonable default implementation. All existing implementations of the abstract
class will then provide the new method. This does not work for interfaces.

It is, generally speaking, impossible to add a method to a public interface
without breaking all existing classes that implement the interface. Classes that
previously implemented the interface will be missing the new method and won’t
compile anymore. You could limit the damage somewhat by adding the new
method to the skeletal implementation at the same time as you add it to the inter-
face, but this really wouldn’t solve the problem. Any implementation that didn’t
inherit from the skeletal implementation would still be broken.

Public interfaces, therefore, must be designed carefully. Once an interface is
released and widely implemented, it is almost impossible to change. You really
must get it right the first time. If an interface contains a minor flaw, it will irritate
you and its users forever. If an interface is severely deficient, it can doom an API.
The best thing to do when releasing a new interface is to have as many program-
mers as possible implement the interface in as many ways as possible before the
interface is frozen. This will allow you to discover flaws while you can still cor-
rect them.

To summarize, an interface is generally the best way to define a type that
permits multiple implementations. An exception to this rule is the case where ease
of evolution is deemed more important than flexibility and power. Under these
circumstances, you should use an abstract class to define the type, but only if you
understand and can accept the limitations. If you export a nontrivial interface, you
should strongly consider providing a skeletal implementation to go with it.
Finally, you should design all of your public interfaces with the utmost care and
test them thoroughly by writing multiple implementations.

CHAPTER 4 CLASSES AND INTERFACES98

Item 19: Use interfaces only to define types

When a class implements an interface, the interface serves as a type that can
be used to refer to instances of the class. That a class implements an interface
should therefore say something about what a client can do with instances of the
class. It is inappropriate to define an interface for any other purpose.

One kind of interface that fails this test is the so-called constant interface.
Such an interface contains no methods; it consists solely of static final fields, each
exporting a constant. Classes using these constants implement the interface to
avoid the need to qualify constant names with a class name. Here is an example:

 // Constant interface antipattern - do not use!
public interface PhysicalConstants {

// Avogadro's number (1/mol)
static final double AVOGADROS_NUMBER = 6.02214199e23;

// Boltzmann constant (J/K)
static final double BOLTZMANN_CONSTANT = 1.3806503e-23;

// Mass of the electron (kg)
static final double ELECTRON_MASS = 9.10938188e-31;

}

The constant interface pattern is a poor use of interfaces. That a class uses
some constants internally is an implementation detail. Implementing a constant
interface causes this implementation detail to leak into the class’s exported API. It
is of no consequence to the users of a class that the class implements a constant
interface. In fact, it may even confuse them. Worse, it represents a commitment: if
in a future release the class is modified so that it no longer needs to use the con-
stants, it still must implement the interface to ensure binary compatibility. If a
nonfinal class implements a constant interface, all of its subclasses will have their
namespaces polluted by the constants in the interface.

There are several constant interfaces in the Java platform libraries, such as
java.io.ObjectStreamConstants. These interfaces should be regarded as
anomalies and should not be emulated.

If you want to export constants, there are several reasonable choices. If the
constants are strongly tied to an existing class or interface, you should add them to
the class or interface. For example, all of the boxed numerical primitive classes,
such as Integer and Double, export MIN_VALUE and MAX_VALUE constants. If the
constants are best viewed as members of an enumerated type, you should export

ITEM 19: USE INTERFACES ONLY TO DEFINE TYPES 99

them with an enum type (Item 30). Otherwise, you should export the constants
with a noninstantiable utility class (Item 4). Here is a utility class version of the
PhysicalConstants example above:

// Constant utility class
package com.effectivejava.science;

public class PhysicalConstants {
private PhysicalConstants() { } // Prevents instantiation

public static final double AVOGADROS_NUMBER = 6.02214199e23;
public static final double BOLTZMANN_CONSTANT = 1.3806503e-23;
public static final double ELECTRON_MASS = 9.10938188e-31;

}

Normally a utility class requires clients to qualify constant names with a class
name, for example, PhysicalConstants.AVOGADROS_NUMBER. If you make heavy
use of the constants exported by a utility class, you can avoid the need for qualify-
ing the constants with the class name by making use of the static import facility,
introduced in release 1.5:

// Use of static import to avoid qualifying constants
import static com.effectivejava.science.PhysicalConstants.*;

public class Test {
double atoms(double mols) {

return AVOGADROS_NUMBER * mols;
}
...
// Many more uses of PhysicalConstants justify static import

}

In summary, interfaces should be used only to define types. They should not
be used to export constants.

CHAPTER 4 CLASSES AND INTERFACES100

Item 20: Prefer class hierarchies to tagged classes

Occasionally you may run across a class whose instances come in two or
more flavors and contain a tag field indicating the flavor of the instance. For
example, consider this class, which is capable of representing a circle or a
rectangle:

// Tagged class - vastly inferior to a class hierarchy!
class Figure {

enum Shape { RECTANGLE, CIRCLE };

// Tag field - the shape of this figure
final Shape shape;

// These fields are used only if shape is RECTANGLE
double length;
double width;

// This field is used only if shape is CIRCLE
double radius;

// Constructor for circle
Figure(double radius) {

shape = Shape.CIRCLE;
this.radius = radius;

}

// Constructor for rectangle
Figure(double length, double width) {

shape = Shape.RECTANGLE;
this.length = length;
this.width = width;

}

double area() {
switch(shape) {

case RECTANGLE:
return length * width;

case CIRCLE:
return Math.PI * (radius * radius);

default:
throw new AssertionError();

}
}

}

ITEM 20: PREFER CLASS HIERARCHIES TO TAGGED CLASSES 101

Such tagged classes have numerous shortcomings. They are cluttered with
boilerplate, including enum declarations, tag fields, and switch statements. Read-
ability is further harmed because multiple implementations are jumbled together
in a single class. Memory footprint is increased because instances are burdened
with irrelevant fields belonging to other flavors. Fields can’t be made final unless
constructors initialize irrelevant fields, resulting in more boilerplate. Constructors
must set the tag field and initialize the right data fields with no help from the com-
piler: if you initialize the wrong fields, the program will fail at runtime. You can’t
add a flavor to a tagged class unless you can modify its source file. If you do add a
flavor, you must remember to add a case to every switch statement, or the class
will fail at runtime. Finally, the data type of an instance gives no clue as to its fla-
vor. In short, tagged classes are verbose, error-prone, and inefficient.

Luckily, object-oriented languages such as Java offer a far better alternative
for defining a single data type capable of representing objects of multiple flavors:
subtyping. A tagged class is just a pallid imitation of a class hierarchy.

To transform a tagged class into a class hierarchy, first define an abstract class
containing an abstract method for each method in the tagged class whose behavior
depends on the tag value. In the Figure class, there is only one such method,
which is area. This abstract class is the root of the class hierarchy. If there are any
methods whose behavior does not depend on the value of the tag, put them in this
class. Similarly, if there are any data fields used by all the flavors, put them in this
class. There are no such flavor-independent methods or fields in the Figure class.

Next, define a concrete subclass of the root class for each flavor of the original
tagged class. In our example, there are two: circle and rectangle. Include in each
subclass the data fields particular to its flavor. In our example, radius is particular
to circle, and length and width are particular to rectangle. Also include in each
subclass the appropriate implementation of each abstract method in the root class.
Here is the class hierarchy corresponding to the original Figure class:

// Class hierarchy replacement for a tagged class
abstract class Figure {

abstract double area();
}

class Circle extends Figure {
final double radius;

Circle(double radius) { this.radius = radius; }

double area() { return Math.PI * (radius * radius); }
}

CHAPTER 4 CLASSES AND INTERFACES102

class Rectangle extends Figure {
final double length;
final double width;

Rectangle(double length, double width) {
this.length = length;
this.width = width;

}
double area() { return length * width; }

}

This class hierarchy corrects every shortcoming of tagged classes noted previ-
ously. The code is simple and clear, containing none of the boilerplate found in the
original. The implementation of each flavor is allotted its own class, and none of
these classes are encumbered by irrelevant data fields. All fields are final. The
compiler ensures that each class’s constructor initializes its data fields, and that
each class has an implementation for every abstract method declared in the root
class. This eliminates the possibility of a runtime failure due to a missing switch
case. Multiple programmers can extend the hierarchy independently and interop-
erably without access to the source for the root class. There is a separate data type
associated with each flavor, allowing programmers to indicate the flavor of a vari-
able and to restrict variables and input parameters to a particular flavor.

Another advantage of class hierarchies is that they can be made to reflect nat-
ural hierarchical relationships among types, allowing for increased flexibility and
better compile-time type checking. Suppose the tagged class in the original exam-
ple also allowed for squares. The class hierarchy could be made to reflect the fact
that a square is a special kind of rectangle (assuming both are immutable):

class Square extends Rectangle {
Square(double side) {

super(side, side);
}

}

Note that the fields in the above hierarchy are accessed directly rather than by
accessor methods. This was done for brevity and would be unacceptable if the
hierarchy were public (Item 14).

In summary, tagged classes are seldom appropriate. If you’re tempted to write
a class with an explicit tag field, think about whether the tag could be eliminated
and the class replaced by a hierarchy. When you encounter an existing class with a
tag field, consider refactoring it into a hierarchy.

ITEM 21: USE FUNCTION OBJECTS TO REPRESENT STRATEGIES 103

Item 21: Use function objects to represent strategies

Some languages support function pointers, delegates, lambda expressions, or sim-
ilar facilities that allow programs to store and transmit the ability to invoke a par-
ticular function. Such facilities are typically used to allow the caller of a function
to specialize its behavior by passing in a second function. For example, the qsort
function in C’s standard library takes a pointer to a comparator function, which
qsort uses to compare the elements to be sorted. The comparator function takes
two parameters, each of which is a pointer to an element. It returns a negative inte-
ger if the element indicated by the first parameter is less than the one indicated by
the second, zero if the two elements are equal, and a positive integer if the element
indicated by the first parameter is greater than the one indicated by the second.
Different sort orders can be obtained by passing in different comparator functions.
This is an example of the Strategy pattern [Gamma95, p. 315]; the comparator
function represents a strategy for sorting elements.

Java does not provide function pointers, but object references can be used to
achieve a similar effect. Invoking a method on an object typically performs some
operation on that object. However, it is possible to define an object whose meth-
ods perform operations on other objects, passed explicitly to the methods. An
instance of a class that exports exactly one such method is effectively a pointer to
that method. Such instances are known as function objects. For example, consider
the following class:

class StringLengthComparator {
public int compare(String s1, String s2) {

return s1.length() - s2.length();
}

}

This class exports a single method that takes two strings and returns a negative
integer if the first string is shorter than the second, zero if the two strings are of
equal length, and a positive integer if the first string is longer. This method is a
comparator that orders strings based on their length instead of the more typical
lexicographic ordering. A reference to a StringLengthComparator object serves
as a “function pointer” to this comparator, allowing it to be invoked on arbitrary
pairs of strings. In other words, a StringLengthComparator instance is a con-
crete strategy for string comparison.

As is typical for concrete strategy classes, the StringLengthComparator
class is stateless: it has no fields, hence all instances of the class are functionally

CHAPTER 4 CLASSES AND INTERFACES104

equivalent. Thus it should be a singleton to save on unnecessary object creation
costs (Item 3, Item 5):

class StringLengthComparator {
private StringLengthComparator() { }
public static final StringLengthComparator

INSTANCE = new StringLengthComparator();
public int compare(String s1, String s2) {

return s1.length() - s2.length();
}

}

To pass a StringLengthComparator instance to a method, we need an
appropriate type for the parameter. It would do no good to use
StringLengthComparator because clients would be unable to pass any other
comparison strategy. Instead, we need to define a Comparator interface and
modify StringLengthComparator to implement this interface. In other words, we
need to define a strategy interface to go with the concrete strategy class. Here it is:

// Strategy interface
public interface Comparator<T> {

public int compare(T t1, T t2);
}

This definition of the Comparator interface happens to come from the
java.util package, but there’s nothing magic about it: you could just as well
have written it yourself. The Comparator interface is generic (Item 26) so that it is
applicable to comparators for objects other than strings. Its compare method takes
two parameters of type T (its formal type parameter) rather than String. The
StringLengthComparator class shown above can be made to implement Compar-
ator<String> merely by declaring it to do so:

class StringLengthComparator implements Comparator<String> {
... // class body is identical to the one shown above

}

Concrete strategy classes are often declared using anonymous classes (Item
22). The following statement sorts an array of strings according to length:

Arrays.sort(stringArray, new Comparator<String>() {
public int compare(String s1, String s2) {

return s1.length() - s2.length();
}

});

ITEM 21: USE FUNCTION OBJECTS TO REPRESENT STRATEGIES 105

But note that using an anonymous class in this way will create a new instance each
time the call is executed. If it is to be executed repeatedly, consider storing the
function object in a private static final field and reusing it. Another advantage of
doing this is that you can give the field a descriptive name for the function object.

Because the strategy interface serves as a type for all of its concrete strategy
instances, a concrete strategy class needn’t be made public to export a concrete
strategy. Instead, a “host class” can export a public static field (or static factory
method) whose type is the strategy interface, and the concrete strategy class can
be a private nested class of the host. In the example that follows, a static member
class is used in preference to an anonymous class to allow the concrete strategy
class to implement a second interface, Serializable:

// Exporting a concrete strategy
class Host {

private static class StrLenCmp
implements Comparator<String>, Serializable {

public int compare(String s1, String s2) {
return s1.length() - s2.length();

}
}

// Returned comparator is serializable
public static final Comparator<String>

STRING_LENGTH_COMPARATOR = new StrLenCmp();

... // Bulk of class omitted
}

The String class uses this pattern to export a case-independent string com-
parator via its CASE_INSENSITIVE_ORDER field.

To summarize, a primary use of function pointers is to implement the Strategy
pattern. To implement this pattern in Java, declare an interface to represent the
strategy, and a class that implements this interface for each concrete strategy.
When a concrete strategy is used only once, it is typically declared and instanti-
ated as an anonymous class. When a concrete strategy is designed for repeated
use, it is generally implemented as a private static member class and exported in a
public static final field whose type is the strategy interface.

CHAPTER 4 CLASSES AND INTERFACES106

Item 22: Favor static member classes over nonstatic

A nested class is a class defined within another class. A nested class should exist
only to serve its enclosing class. If a nested class would be useful in some other
context, then it should be a top-level class. There are four kinds of nested classes:
static member classes, nonstatic member classes, anonymous classes, and local
classes. All but the first kind are known as inner classes. This item tells you when
to use which kind of nested class and why.

A static member class is the simplest kind of nested class. It is best thought of
as an ordinary class that happens to be declared inside another class and has
access to all of the enclosing class’s members, even those declared private. A
static member class is a static member of its enclosing class and obeys the same
accessibility rules as other static members. If it is declared private, it is accessible
only within the enclosing class, and so forth.

One common use of a static member class is as a public helper class, useful
only in conjunction with its outer class. For example, consider an enum describing
the operations supported by a calculator (Item 30). The Operation enum should
be a public static member class of the Calculator class. Clients of Calculator
could then refer to operations using names like Calculator.Operation.PLUS and
Calculator.Operation.MINUS.

Syntactically, the only difference between static and nonstatic member classes
is that static member classes have the modifier static in their declarations.
Despite the syntactic similarity, these two kinds of nested classes are very differ-
ent. Each instance of a nonstatic member class is implicitly associated with an
enclosing instance of its containing class. Within instance methods of a nonstatic
member class, you can invoke methods on the enclosing instance or obtain a refer-
ence to the enclosing instance using the qualified this construct [JLS, 15.8.4]. If an
instance of a nested class can exist in isolation from an instance of its enclosing
class, then the nested class must be a static member class: it is impossible to create
an instance of a nonstatic member class without an enclosing instance.

The association between a nonstatic member class instance and its enclosing
instance is established when the former is created; it cannot be modified
thereafter. Normally, the association is established automatically by invoking a
nonstatic member class constructor from within an instance method of the
enclosing class. It is possible, although rare, to establish the association manually
using the expression enclosingInstance.new MemberClass(args). As you
would expect, the association takes up space in the nonstatic member class
instance and adds time to its construction.

ITEM 22: FAVOR STATIC MEMBER CLASSES OVER NONSTATIC 107

One common use of a nonstatic member class is to define an Adapter
[Gamma95, p. 139] that allows an instance of the outer class to be viewed as an
instance of some unrelated class. For example, implementations of the Map inter-
face typically use nonstatic member classes to implement their collection views,
which are returned by Map’s keySet, entrySet, and values methods. Similarly,
implementations of the collection interfaces, such as Set and List, typically use
nonstatic member classes to implement their iterators:

// Typical use of a nonstatic member class
public class MySet<E> extends AbstractSet<E> {

... // Bulk of the class omitted

public Iterator<E> iterator() {
return new MyIterator();

}

private class MyIterator implements Iterator<E> {
...

}
}

If you declare a member class that does not require access to an enclosing
instance, always put the static modifier in its declaration, making it a static
rather than a nonstatic member class. If you omit this modifier, each instance will
have an extraneous reference to its enclosing instance. Storing this reference costs
time and space, and can result in the enclosing instance being retained when it
would otherwise be eligible for garbage collection (Item 6). And should you ever
need to allocate an instance without an enclosing instance, you’ll be unable to do
so, as nonstatic member class instances are required to have an enclosing instance.

A common use of private static member classes is to represent components of
the object represented by their enclosing class. For example, consider a Map
instance, which associates keys with values. Many Map implementations have an
internal Entry object for each key-value pair in the map. While each entry is asso-
ciated with a map, the methods on an entry (getKey, getValue, and setValue) do
not need access to the map. Therefore, it would be wasteful to use a nonstatic
member class to represent entries: a private static member class is best. If you
accidentally omit the static modifier in the entry declaration, the map will still
work, but each entry will contain a superfluous reference to the map, which wastes
space and time.

It is doubly important to choose correctly between a static and a nonstatic
member class if the class in question is a public or protected member of an

CHAPTER 4 CLASSES AND INTERFACES108

exported class. In this case, the member class is an exported API element and can-
not be changed from a nonstatic to a static member class in a subsequent release
without violating binary compatibility.

Anonymous classes are unlike anything else in the Java programming lan-
guage. As you would expect, an anonymous class has no name. It is not a member
of its enclosing class. Rather than being declared along with other members, it is
simultaneously declared and instantiated at the point of use. Anonymous classes
are permitted at any point in the code where an expression is legal. Anonymous
classes have enclosing instances if and only if they occur in a nonstatic context.
But even if they occur in a static context, they cannot have any static members.

There are many limitations on the applicability of anonymous classes. You
can’t instantiate them except at the point they’re declared. You can’t perform
instanceof tests or do anything else that requires you to name the class. You
can’t declare an anonymous class to implement multiple interfaces, or to extend a
class and implement an interface at the same time. Clients of an anonymous class
can’t invoke any members except those it inherits from its supertype. Because
anonymous classes occur in the midst of expressions, they must be kept short—
about ten lines or fewer—or readability will suffer.

One common use of anonymous classes is to create function objects (Item 21)
on the fly. For example, the sort method invocation on page 104 sorts an array of
strings according to their length using an anonymous Comparator instance.
Another common use of anonymous classes is to create process objects, such as
Runnable, Thread, or TimerTask instances. A third common use is within static
factory methods (see the intArrayAsList method in Item 18).

Local classes are the least frequently used of the four kinds of nested classes. A
local class can be declared anywhere a local variable can be declared and obeys the
same scoping rules. Local classes have attributes in common with each of the other
kinds of nested classes. Like member classes, they have names and can be used
repeatedly. Like anonymous classes, they have enclosing instances only if they are
defined in a nonstatic context, and they cannot contain static members. And like
anonymous classes, they should be kept short so as not to harm readability.

To recap, there are four different kinds of nested classes, and each has its
place. If a nested class needs to be visible outside of a single method or is too long
to fit comfortably inside a method, use a member class. If each instance of the
member class needs a reference to its enclosing instance, make it nonstatic; other-
wise, make it static. Assuming the class belongs inside a method, if you need to
create instances from only one location and there is a preexisting type that charac-
terizes the class, make it an anonymous class; otherwise, make it a local class.

109

C H A P T E R 5
Generics

IN release 1.5, generics were added to Java. Before generics, you had to cast
every object you read from a collection. If someone accidentally inserted an object
of the wrong type, casts could fail at runtime. With generics, you tell the compiler
what types of objects are permitted in each collection. The compiler inserts casts
for you automatically and tells you at compile time if you try to insert an object of
the wrong type. This results in programs that are both safer and clearer, but these
benefits come with complications. This chapter tells you how to maximize the
benefits and minimize the complications. For a more detailed treatment of this
material, see Langer’s tutorial [Langer08] or Naftalin and Wadler’s book
[Naftalin07].

Item 23: Don’t use raw types in new code

First, a few terms. A class or interface whose declaration has one or more type
parameters is a generic class or interface [JLS, 8.1.2, 9.1.2]. For example, as of
release 1.5, the List interface has a single type parameter, E, representing the ele-
ment type of the list. Technically the name of the interface is now List<E> (read
“list of E”), but people often call it List for short. Generic classes and interfaces
are collectively known as generic types.

Each generic type defines a set of parameterized types, which consist of the
class or interface name followed by an angle-bracketed list of actual type parame-
ters corresponding to the generic type’s formal type parameters [JLS, 4.4, 4.5].
For example, List<String> (read “list of string”) is a parameterized type repre-
senting a list whose elements are of type String. (String is the actual type
parameter corresponding to the formal type parameter E.)

Finally, each generic type defines a raw type, which is the name of the generic
type used without any accompanying actual type parameters [JLS, 4.8]. For exam-

CHAPTER 5 GENERICS110

ple, the raw type corresponding to List<E> is List. Raw types behave as if all of
the generic type information were erased from the type declaration. For all practi-
cal purposes, the raw type List behaves the same way as the interface type List
did before generics were added to the platform.

Before release 1.5, this would have been an exemplary collection declaration:

// Now a raw collection type - don't do this!

/**
* My stamp collection. Contains only Stamp instances.
*/
private final Collection stamps = ... ;

If you accidentally put a coin into your stamp collection, the erroneous insertion
compiles and runs without error:

// Erroneous insertion of coin into stamp collection
stamps.add(new Coin(...));

You don’t get an error until you retrieve the coin from the stamp collection:

// Now a raw iterator type - don't do this!
for (Iterator i = stamps.iterator(); i.hasNext();) {

Stamp s = (Stamp) i.next(); // Throws ClassCastException
... // Do something with the stamp

}

As mentioned throughout this book, it pays to discover errors as soon as pos-
sible after they are made, ideally at compile time. In this case, you don’t discover
the error till runtime, long after it has happened, and in code that is far removed
from the code containing the error. Once you see the ClassCastException, you
have to search through the code base looking for the method invocation that put
the coin into the stamp collection. The compiler can’t help you, because it can’t
understand the comment that says, “Contains only Stamp instances.”

With generics, you replace the comment with an improved type declaration
for the collection that tells the compiler the information that was previously hid-
den in the comment:

// Parameterized collection type - typesafe
private final Collection<Stamp> stamps = ... ;

ITEM 23: DON’T USE RAW TYPES IN NEW CODE 111

From this declaration the compiler knows that stamps should contain only Stamp
instances and guarantees this to be the case, assuming your entire code base is
compiled with a compiler from release 1.5 or later and all the code compiles with-
out emitting (or suppressing; see Item 24) any warnings. When stamps is declared
with a parameterized type, the erroneous insertion generates a compile-time error
message that tells you exactly what is wrong:

Test.java:9: add(Stamp) in Collection<Stamp> cannot be applied
to (Coin)

stamps.add(new Coin());
 ^

As an added benefit, you no longer have to cast manually when removing ele-
ments from collections. The compiler inserts invisible casts for you and guaran-
tees that they won’t fail (assuming, again, that all of your code was compiled with
a generics-aware compiler and did not produce or suppress any warnings). This is
true whether you use a for-each loop (Item 46):

// for-each loop over a parameterized collection - typesafe
for (Stamp s : stamps) { // No cast

... // Do something with the stamp
}

or a traditional for loop:

// for loop with parameterized iterator declaration - typesafe
for (Iterator<Stamp> i = stamps.iterator(); i.hasNext();) {

Stamp s = i.next(); // No cast necessary
... // Do something with the stamp

}

While the prospect of accidentally inserting a coin into a stamp collection
may appear far-fetched, the problem is real. For example, it is easy to imagine
someone putting a java.util.Date instance into a collection that is supposed to
contain only java.sql.Date instances.

As noted above, it is still legal to use collection types and other generic types
without supplying type parameters, but you should not do it. If you use raw
types, you lose all the safety and expressiveness benefits of generics. Given that
you shouldn’t use raw types, why did the language designers allow them? To pro-
vide compatibility. The Java platform was about to enter its second decade when
generics were introduced, and there was an enormous amount of Java code in

CHAPTER 5 GENERICS112

existence that did not use generics. It was deemed critical that all of this code
remain legal and interoperable with new code that does use generics. It had to be
legal to pass instances of parameterized types to methods that were designed for
use with ordinary types, and vice versa. This requirement, known as migration
compatibility, drove the decision to support raw types.

While you shouldn’t use raw types such as List in new code, it is fine to use
types that are parameterized to allow insertion of arbitrary objects, such as
List<Object>. Just what is the difference between the raw type List and the
parameterized type List<Object>? Loosely speaking, the former has opted out of
generic type checking, while the latter has explicitly told the compiler that it is
capable of holding objects of any type. While you can pass a List<String> to a
parameter of type List, you can’t pass it to a parameter of type List<Object>.
There are subtyping rules for generics, and List<String> is a subtype of the raw
type List, but not of the parameterized type List<Object> (Item 25). As a conse-
quence, you lose type safety if you use a raw type like List, but not if you use
a parameterized type like List<Object>.

To make this concrete, consider the following program:

// Uses raw type (List) - fails at runtime!
public static void main(String[] args) {

List<String> strings = new ArrayList<String>();
unsafeAdd(strings, new Integer(42));
String s = strings.get(0); // Compiler-generated cast

}

private static void unsafeAdd(List list, Object o) {
list.add(o);

}

This program compiles, but because it uses the raw type List, you get a warning:

Test.java:10: warning: unchecked call to add(E) in raw type List
list.add(o);

^

And indeed, if you run the program, you get a ClassCastException when the
program tries to cast the result of the invocation strings.get(0) to a String.
This is a compiler-generated cast, so it’s normally guaranteed to succeed, but in
this case we ignored a compiler warning and paid the price.

ITEM 23: DON’T USE RAW TYPES IN NEW CODE 113

If you replace the raw type List with the parameterized type List<Object>
in the unsafeAdd declaration and try to recompile the program, you’ll find that it
no longer compiles. Here is the error message:

Test.java:5: unsafeAdd(List<Object>,Object) cannot be applied
to (List<String>,Integer)

unsafeAdd(strings, new Integer(42));
^

You might be tempted to use a raw type for a collection whose element type is
unknown and doesn’t matter. For example, suppose you want to write a method
that takes two sets and returns the number of elements they have in common.
Here’s how you might write such a method if you were new to generics:

// Use of raw type for unknown element type - don't do this!
static int numElementsInCommon(Set s1, Set s2) {

int result = 0;
for (Object o1 : s1)

if (s2.contains(o1))
result++;

return result;
}

This method works but it uses raw types, which are dangerous. Since release
1.5, Java has provided a safe alternative known as unbounded wildcard types. If
you want to use a generic type but you don’t know or care what the actual type
parameter is, you can use a question mark instead. For example, the unbounded
wildcard type for the generic type Set<E> is Set<?> (read “set of some type”). It
is the most general parameterized Set type, capable of holding any set. Here is
how the numElementsInCommon method looks with unbounded wildcard types:

// Unbounded wildcard type - typesafe and flexible
static int numElementsInCommon(Set<?> s1, Set<?> s2) {

int result = 0;
for (Object o1 : s1)

if (s2.contains(o1))
result++;

return result;
}

What is the difference between the unbounded wildcard type Set<?> and the
raw type Set? Do the question marks really buy you anything? Not to belabor the
point, but the wildcard type is safe and the raw type isn’t. You can put any element

CHAPTER 5 GENERICS114

into a collection with a raw type, easily corrupting the collection’s type invariant
(as demonstrated by the unsafeAdd method on page 112); you can’t put any ele-
ment (other than null) into a Collection<?>. Attempting to do so will gener-
ate a compile-time error message like this:

WildCard.java:13: cannot find symbol
symbol : method add(String)
location: interface Collection<capture#825 of ?>

c.add("verboten");
^

Admittedly this error message leaves something to be desired, but the com-
piler has done its job, preventing you from corrupting the collection’s type invari-
ant. Not only can’t you put any element (other than null) into a Collection<?>,
but you can’t assume anything about the type of the objects that you get out. If
these restrictions are unacceptable, you can use generic methods (Item 27) or
bounded wildcard types (Item 28).

There are two minor exceptions to the rule that you should not use raw types
in new code, both of which stem from the fact that generic type information is
erased at runtime (Item 25). You must use raw types in class literals. The speci-
fication does not permit the use of parameterized types (though it does permit
array types and primitive types) [JLS, 15.8.2]. In other words, List.class,
String[].class, and int.class are all legal, but List<String>.class and
List<?>.class are not.

The second exception to the rule concerns the instanceof operator. Because
generic type information is erased at runtime, it is illegal to use the instanceof
operator on parameterized types other than unbounded wildcard types. The use of
unbounded wildcard types in place of raw types does not affect the behavior of the
instanceof operator in any way. In this case, the angle brackets and question
marks are just noise. This is the preferred way to use the instanceof operator
with generic types:

// Legitimate use of raw type - instanceof operator
if (o instanceof Set) { // Raw type

Set<?> m = (Set<?>) o; // Wildcard type
...

}

Note that once you’ve determined that o is a Set, you must cast it to the wildcard
type Set<?>, not the raw type Set. This is a checked cast, so it will not cause a
compiler warning.

ITEM 23: DON’T USE RAW TYPES IN NEW CODE 115

In summary, using raw types can lead to exceptions at runtime, so don’t use
them in new code. They are provided only for compatibility and interoperability
with legacy code that predates the introduction of generics. As a quick review,
Set<Object> is a parameterized type representing a set that can contain objects of
any type, Set<?> is a wildcard type representing a set that can contain only
objects of some unknown type, and Set is a raw type, which opts out of the
generic type system. The first two are safe and the last is not.

For quick reference, the terms introduced in this item (and a few introduced
elsewhere in this chapter) are summarized in the following table:

Term Example Item

Parameterized type List<String> Item 23

Actual type parameter String Item 23

Generic type List<E> Items 23, 26

Formal type parameter E Item 23

Unbounded wildcard type List<?> Item 23

Raw type List Item 23

Bounded type parameter <E extends Number> Item 26

Recursive type bound <T extends Comparable<T>> Item 27

Bounded wildcard type List<? extends Number> Item 28

Generic method static <E> List<E> asList(E[] a) Item 27

Type token String.class Item 29

CHAPTER 5 GENERICS116

Item 24: Eliminate unchecked warnings

When you program with generics, you will see many compiler warnings:
unchecked cast warnings, unchecked method invocation warnings, unchecked
generic array creation warnings, and unchecked conversion warnings. The more
experience you acquire with generics, the fewer warnings you’ll get, but don’t
expect newly written code that uses generics to compile cleanly.

Many unchecked warnings are easy to eliminate. For example, suppose you
accidentally write this declaration:

Set<Lark> exaltation = new HashSet();

The compiler will gently remind you what you did wrong:

Venery.java:4: warning: [unchecked] unchecked conversion
found : HashSet, required: Set<Lark>

Set<Lark> exaltation = new HashSet();
^

You can then make the indicated correction, causing the warning to disappear:

Set<Lark> exaltation = new HashSet<Lark>();

Some warnings will be much more difficult to eliminate. This chapter is filled
with examples of such warnings. When you get warnings that require some
thought, persevere! Eliminate every unchecked warning that you can. If you
eliminate all warnings, you are assured that your code is typesafe, which is a very
good thing. It means that you won’t get a ClassCastException at runtime, and it
increases your confidence that your program is behaving as you intended.

If you can’t eliminate a warning, and you can prove that the code that
provoked the warning is typesafe, then (and only then) suppress the warning
with an @SuppressWarnings("unchecked") annotation. If you suppress warn-
ings without first proving that the code is typesafe, you are only giving yourself a
false sense of security. The code may compile without emitting any warnings, but
it can still throw a ClassCastException at runtime. If, however, you ignore
unchecked warnings that you know to be safe (instead of suppressing them), you
won’t notice when a new warning crops up that represents a real problem. The
new warning will get lost amidst all the false alarms that you didn’t silence.

ITEM 24: ELIMINATE UNCHECKED WARNINGS 117

The SuppressWarnings annotation can be used at any granularity, from an
individual local variable declaration to an entire class. Always use the Suppress-
Warnings annotation on the smallest scope possible. Typically this will be a
variable declaration or a very short method or constructor. Never use Suppress-
Warnings on an entire class. Doing so could mask critical warnings.

If you find yourself using the SuppressWarnings annotation on a method or
constructor that’s more than one line long, you may be able to move it onto a local
variable declaration. You may have to declare a new local variable, but it’s worth
it. For example, consider this toArray method, which comes from ArrayList:

public <T> T[] toArray(T[] a) {
if (a.length < size)

return (T[]) Arrays.copyOf(elements, size, a.getClass());
System.arraycopy(elements, 0, a, 0, size);
if (a.length > size)

a[size] = null;
return a;

}

If you compile ArrayList, the method generates this warning:

ArrayList.java:305: warning: [unchecked] unchecked cast
found : Object[], required: T[]

return (T[]) Arrays.copyOf(elements, size, a.getClass());
^

It is illegal to put a SuppressWarnings annotation on the return statement,
because it isn’t a declaration [JLS, 9.7]. You might be tempted to put the annota-
tion on the entire method, but don’t. Instead, declare a local variable to hold the
return value and annotate its declaration, like so:

// Adding local variable to reduce scope of @SuppressWarnings
public <T> T[] toArray(T[] a) {

if (a.length < size) {
// This cast is correct because the array we're creating
// is of the same type as the one passed in, which is T[].
@SuppressWarnings("unchecked") T[] result =

(T[]) Arrays.copyOf(elements, size, a.getClass());
return result;

}
System.arraycopy(elements, 0, a, 0, size);
if (a.length > size)

a[size] = null;
return a;

}

CHAPTER 5 GENERICS118

This method compiles cleanly and minimizes the scope in which unchecked warn-
ings are suppressed.

Every time you use an @SuppressWarnings("unchecked") annotation,
add a comment saying why it’s safe to do so. This will help others understand
the code, and more importantly, it will decrease the odds that someone will mod-
ify the code so as to make the computation unsafe. If you find it hard to write such
a comment, keep thinking. You may end up figuring out that the unchecked opera-
tion isn’t safe after all.

In summary, unchecked warnings are important. Don’t ignore them. Every
unchecked warning represents the potential for a ClassCastException at run-
time. Do your best to eliminate these warnings. If you can’t eliminate an
unchecked warning and you can prove that the code that provoked it is typesafe,
suppress the warning with an @SuppressWarnings("unchecked") annotation in
the narrowest possible scope. Record the rationale for your decision to suppress
the warning in a comment.

ITEM 25: PREFER LISTS TO ARRAYS 119

Item 25: Prefer lists to arrays

Arrays differ from generic types in two important ways. First, arrays are covariant.
This scary-sounding word means simply that if Sub is a subtype of Super, then the
array type Sub[] is a subtype of Super[]. Generics, by contrast, are invariant: for
any two distinct types Type1 and Type2, List<Type1> is neither a subtype nor a
supertype of List<Type2> [JLS, 4.10; Naftalin07, 2.5]. You might think this
means that generics are deficient, but arguably it is arrays that are deficient.

This code fragment is legal:

// Fails at runtime!
Object[] objectArray = new Long[1];
objectArray[0] = "I don't fit in"; // Throws ArrayStoreException

but this one is not:

// Won't compile!
List<Object> ol = new ArrayList<Long>(); // Incompatible types
ol.add("I don't fit in");

Either way you can’t put a String into a Long container, but with an array you
find out that you’ve made a mistake at runtime; with a list, you find out at compile
time. Of course you’d rather find out at compile time.

The second major difference between arrays and generics is that arrays are
reified [JLS, 4.7]. This means that arrays know and enforce their element types at
runtime. As noted above, if you try to store a String into an array of Long, you’ll
get an ArrayStoreException. Generics, by contrast, are implemented by erasure
[JLS, 4.6]. This means that they enforce their type constraints only at compile
time and discard (or erase) their element type information at runtime. Erasure is
what allows generic types to interoperate freely with legacy code that does not use
generics (Item 23).

Because of these fundamental differences, arrays and generics do not mix
well. For example, it is illegal to create an array of a generic type, a parameterized
type, or a type parameter. None of these array creation expressions are legal: new
List<E>[], new List<String>[], new E[]. All will result in generic array cre-
ation errors at compile time.

Why is it illegal to create a generic array? Because it isn’t typesafe. If it were
legal, casts generated by the compiler in an otherwise correct program could fail at
runtime with a ClassCastException. This would violate the fundamental guaran-
tee provided by the generic type system.

CHAPTER 5 GENERICS120

To make this more concrete, consider the following code fragment:

// Why generic array creation is illegal - won't compile!
List<String>[] stringLists = new List<String>[1]; // (1)
List<Integer> intList = Arrays.asList(42); // (2)
Object[] objects = stringLists; // (3)
objects[0] = intList; // (4)
String s = stringLists[0].get(0); // (5)

Let’s pretend that line 1, which creates a generic array, is legal. Line 2 creates and
initializes a List<Integer> containing a single element. Line 3 stores the
List<String> array into an Object array variable, which is legal because arrays
are covariant. Line 4 stores the List<Integer> into the sole element of the
Object array, which succeeds because generics are implemented by erasure: the
runtime type of a List<Integer> instance is simply List, and the runtime type of
a List<String>[] instance is List[], so this assignment doesn’t generate an
ArrayStoreException. Now we’re in trouble. We’ve stored a List<Integer>
instance into an array that is declared to hold only List<String> instances. In
line 5, we retrieve the sole element from the sole list in this array. The compiler
automatically casts the retrieved element to String, but it’s an Integer, so we get
a ClassCastException at runtime. In order to prevent this from happening, line 1
(which creates a generic array) generates a compile-time error.

Types such as E, List<E>, and List<String> are technically known as non-
reifiable types [JLS, 4.7]. Intuitively speaking, a non-reifiable type is one whose
runtime representation contains less information than its compile-time representa-
tion. The only parameterized types that are reifiable are unbounded wildcard types
such as List<?> and Map<?,?> (Item 23). It is legal, though infrequently useful, to
create arrays of unbounded wildcard types.

The prohibition on generic array creation can be annoying. It means, for exam-
ple, that it’s not generally possible for a generic type to return an array of its ele-
ment type (but see Item 29 for a partial solution). It also means that you can get
confusing warnings when using varargs methods (Item 42) in combination with
generic types. This is because every time you invoke a varargs method, an array is
created to hold the varargs parameters. If the element type of this array is not reifi-
able, you get a warning. There is little you can do about these warnings other than
to suppress them (Item 24), and to avoid mixing generics and varargs in your APIs.

When you get a generic array creation error, the best solution is often to use
the collection type List<E> in preference to the array type E[]. You might sacri-
fice some performance or conciseness, but in exchange you get better type safety
and interoperability.

ITEM 25: PREFER LISTS TO ARRAYS 121

For example, suppose you have a synchronized list (of the sort returned by
Collections.synchronizedList) and a function that takes two values of the
type held by the list and returns a third. Now suppose you want to write a method
to “reduce” the list by applying the function across it. If the list contains integers
and the function adds two integer values, the reduce method returns the sum of all
the values in the list. If the function multiplies two integer values, the method
returns the product of the values in the list. If the list contains strings and the func-
tion concatenates two strings, the method returns a string consisting of all the
strings in the list in sequence. In addition to a list and a function, the reduce
method takes an initial value for the reduction, which is returned if the list is
empty. (The initial value is typically the identity element for the function, which is
0 for addition, 1 for multiplication, and "" for string concatenation.) Here’s how
the code might have looked without generics:

// Reduction without generics, and with concurrency flaw!
static Object reduce(List list, Function f, Object initVal) {

synchronized(list) {
Object result = initVal;
for (Object o : list)

result = f.apply(result, o);
return result;

}
}

interface Function {
Object apply(Object arg1, Object arg2);

}

Now, suppose you’ve read Item 67, which tells you not to call “alien methods”
from a synchronized region. So, you modify the reduce method to copy the con-
tents of the list while holding the lock, which allows you to perform the reduction
on the copy. Prior to release 1.5, the natural way to do this would have been using
List’s toArray method (which locks the list internally):

// Reduction without generics or concurrency flaw
static Object reduce(List list, Function f, Object initVal) {

Object[] snapshot = list.toArray(); // Locks list internally
Object result = initVal;
for (Object o : list)

result = f.apply(result, o);
return result;

}

CHAPTER 5 GENERICS122

If you try to do this with generics you’ll get into trouble of the sort that we
discussed above. Here’s a generic version of the Function interface:

interface Function<T> {
T apply(T arg1, T arg2);

}

And here’s a naive attempt to apply generics to the revised version of the reduce
method. This is a generic method (Item 27). Don’t worry if you don’t understand
the declaration. For the purposes of this item, you should concentrate on the
method body:

// Naive generic version of reduction - won't compile!
static <E> E reduce(List<E> list, Function<E> f, E initVal) {

E[] snapshot = list.toArray(); // Locks list
E result = initVal;
for (E e : snapshot)

result = f.apply(result, e);
return result;

}

If you try to compile this method, you’ll get the following error:

Reduce.java:12: incompatible types
found : Object[], required: E[]

E[] snapshot = list.toArray(); // Locks list
^

No big deal, you say, I’ll cast the Object array to an E array:

E[] snapshot = (E[]) list.toArray();

That gets rid of the error, but now you get a warning:

Reduce.java:12: warning: [unchecked] unchecked cast
found : Object[], required: E[]

E[] snapshot = (E[]) list.toArray(); // Locks list
^

The compiler is telling you that it can’t check the safety of the cast at runtime
because it doesn’t know what E is at runtime—remember, element type informa-
tion is erased from generics at runtime. Will this program work? Yes, it turns out
that it will, but it isn’t safe. With minor modifications, you could get it to throw a

ITEM 25: PREFER LISTS TO ARRAYS 123

ClassCastException on a line that doesn’t contain an explicit cast. The compile-
time type of snapshot is E[] which could be String[], Integer[], or any other
kind of array. The runtime type is Object[], and that’s dangerous. Casts to arrays
of non-reifiable types should be used only under special circumstances (Item 26).

So what should you do? Use a list instead of an array. Here is a version of the
reduce method that compiles without error or warning:

// List-based generic reduction
static <E> E reduce(List<E> list, Function<E> f, E initVal) {

List<E> snapshot;
synchronized(list) {

snapshot = new ArrayList<E>(list);
}
E result = initVal;
for (E e : snapshot)

result = f.apply(result, e);
return result;

}

This version is a tad more verbose than the array version, but it’s worth it for the
peace of mind that comes from knowing you won’t get a ClassCastException at
runtime.

In summary, arrays and generics have very different type rules. Arrays are
covariant and reified; generics are invariant and erased. As a consequence, arrays
provide runtime type safety but not compile-time type safety and vice versa for
generics. Generally speaking, arrays and generics don’t mix well. If you find
yourself mixing them and getting compile-time errors or warnings, your first
impulse should be to replace the arrays with lists.

CHAPTER 5 GENERICS124

Item 26: Favor generic types

It is generally not too difficult to parameterize your collection declarations and
make use of the generic types and methods provided by the JDK. Writing your
own generic types is a bit more difficult, but it’s worth the effort to learn how.

Consider the simple stack implementation from Item 6:

// Object-based collection - a prime candidate for generics
public class Stack {

private Object[] elements;
private int size = 0;
private static final int DEFAULT_INITIAL_CAPACITY = 16;

public Stack() {
elements = new Object[DEFAULT_INITIAL_CAPACITY];

}

public void push(Object e) {
ensureCapacity();
elements[size++] = e;

}

public Object pop() {
if (size == 0)

throw new EmptyStackException();
Object result = elements[--size];
elements[size] = null; // Eliminate obsolete reference
return result;

}

public boolean isEmpty() {
return size == 0;

}

private void ensureCapacity() {
if (elements.length == size)

elements = Arrays.copyOf(elements, 2 * size + 1);
}

}

This class is a prime candidate for generification, in other words, for being com-
patibly enhanced to take advantage of generic types. As it stands, you have to cast
objects that are popped off the stack, and those casts might fail at runtime. The
first step in generifying a class is to add one or more type parameters to its decla-

ITEM 26: FAVOR GENERIC TYPES 125

ration. In this case there is one type parameter, representing the element type of
the stack, and the conventional name for this parameter is E (Item 44).

The next step is to replace all the uses of the type Object with the appropriate
type parameter, and then try to compile the resulting program:

// Initial attempt to generify Stack = won’t compile!
public class Stack<E> {

private E[] elements;
private int size = 0;
private static final int DEFAULT_INITIAL_CAPACITY = 16;

public Stack() {
elements = new E[DEFAULT_INITIAL_CAPACITY];

}

public void push(E e) {
ensureCapacity();
elements[size++] = e;

}

public E pop() {
if (size==0)

throw new EmptyStackException();
E result = elements[--size];
elements[size] = null; // Eliminate obsolete reference
return result;

}
... // no changes in isEmpty or ensureCapacity

}

You’ll generally get at least one error or warning, and this class is no exception.
Luckily, this class generates only one error:

Stack.java:8: generic array creation
elements = new E[DEFAULT_INITIAL_CAPACITY];

^

As explained in Item 25, you can’t create an array of a non-reifiable type, such
as E. This problem arises every time you write a generic type that is backed by an
array. There are two ways to solve it. The first solution directly circumvents the
prohibition on generic array creation: create an array of Object and cast it to the

CHAPTER 5 GENERICS126

generic array type. Now in place of an error, the compiler will emit a warning.
This usage is legal, but it’s not (in general) typesafe:

Stack.java:8: warning: [unchecked] unchecked cast
found : Object[], required: E[]

elements = (E[]) new Object[DEFAULT_INITIAL_CAPACITY];
^

The compiler may not be able to prove that your program is typesafe, but you
can. You must convince yourself that the unchecked cast will not compromise the
type safety of the program. The array in question (elements) is stored in a private
field and never returned to the client or passed to any other method. The only ele-
ments stored in the array are those passed to the push method, which are of type E,
so the unchecked cast can do no harm.

Once you’ve proved that an unchecked cast is safe, suppress the warning in as
narrow a scope as possible (Item 24). In this case, the constructor contains only the
unchecked array creation, so it’s appropriate to suppress the warning in the entire
constructor. With the addition of an annotation to do this, Stack compiles cleanly
and you can use it without explicit casts or fear of a ClassCastException:

// The elements array will contain only E instances from push(E).
// This is sufficient to ensure type safety, but the runtime
// type of the array won't be E[]; it will always be Object[]!
@SuppressWarnings("unchecked")
public Stack() {

elements = (E[]) new Object[DEFAULT_INITIAL_CAPACITY];
}

The second way to eliminate the generic array creation error in Stack is to
change the type of the field elements from E[] to Object[]. If you do this, you’ll
get a different error:

Stack.java:19: incompatible types
found : Object, required: E

E result = elements[--size];
 ^

You can change this error into a warning by casting the element retrieved from the
array from Object to E:

Stack.java:19: warning: [unchecked] unchecked cast
found : Object, required: E

E result = (E) elements[--size];
 ^

ITEM 26: FAVOR GENERIC TYPES 127

Because E is a non-reifiable type, there’s no way the compiler can check the
cast at runtime. Again, you can easily prove to yourself that the unchecked cast is
safe, so it’s appropriate to suppress the warning. In line with the advice of Item 24,
we suppress the warning only on the assignment that contains the unchecked cast,
not on the entire pop method:

// Appropriate suppression of unchecked warning
public E pop() {

if (size==0)
throw new EmptyStackException();

// push requires elements to be of type E, so cast is correct
@SuppressWarnings("unchecked") E result =

(E) elements[--size];

elements[size] = null; // Eliminate obsolete reference
return result;

}

Which of the two techniques you choose for dealing with the generic array
creation error is largely a matter of taste. All other things being equal, it is riskier
to suppress an unchecked cast to an array type than to a scalar type, which would
suggest the second solution. But in a more realistic generic class than Stack, you
would probably be reading from the array at many points in the code, so choosing
the second solution would require many casts to E rather than a single cast to E[],
which is why the first solution is used more commonly [Naftalin07, 6.7].

The following program demonstrates the use of our generic Stack class. The
program prints its command line arguments in reverse order and converted to
uppercase. No explicit cast is necessary to invoke String’s toUpperCase method
on the elements popped from the stack, and the automatically generated cast is
guaranteed to succeed:

// Little program to exercise our generic Stack
public static void main(String[] args) {

Stack<String> stack = new Stack<String>();
for (String arg : args)

stack.push(arg);
while (!stack.isEmpty())

System.out.println(stack.pop().toUpperCase());
}

CHAPTER 5 GENERICS128

The foregoing example may appear to contradict Item 25, which encourages
the use of lists in preference to arrays. It is not always possible or desirable to use
lists inside your generic types. Java doesn’t support lists natively, so some generic
types, such as ArrayList, must be implemented atop arrays. Other generic types,
such as HashMap, are implemented atop arrays for performance.

The great majority of generic types are like our Stack example in that their
type parameters have no restrictions: you can create a Stack<Object>,
Stack<int[]>, Stack<List<String>>, or a Stack of any other object reference
type. Note that you can’t create a Stack of a primitive type: trying to create a
Stack<int> or Stack<double> will result in a compile-time error. This is a fun-
damental limitation of Java’s generic type system. You can work around this
restriction by using boxed primitive types (Item 49).

There are some generic types that restrict the permissible values of their type
parameters. For example, consider java.util.concurrent.DelayQueue, whose
declaration looks like this:

class DelayQueue<E extends Delayed> implements BlockingQueue<E>;

The type parameter list (<E extends Delayed>) requires that the actual type
parameter E must be a subtype of java.util.concurrent.Delayed. This allows
the DelayQueue implementation and its clients to take advantage of Delayed
methods on the elements of a DelayQueue, without the need for explicit casting or
the risk of a ClassCastException. The type parameter E is known as a bounded
type parameter. Note that the subtype relation is defined so that every type is a
subtype of itself [JLS, 4.10], so it is legal to create a DelayQueue<Delayed>.

In summary, generic types are safer and easier to use than types that require
casts in client code. When you design new types, make sure that they can be used
without such casts. This will often mean making the types generic. Generify your
existing types as time permits. This will make life easier for new users of these
types without breaking existing clients (Item 23).

ITEM 27: FAVOR GENERIC METHODS 129

Item 27: Favor generic methods

Just as classes can benefit from generification, so can methods. Static utility meth-
ods are particularly good candidates for generification. All of the “algorithm”
methods in Collections (such as binarySearch and sort) have been generified.

Writing generic methods is similar to writing generic types. Consider this
method, which returns the union of two sets:

// Uses raw types - unacceptable! (Item 23)
public static Set union(Set s1, Set s2) {

Set result = new HashSet(s1);
result.addAll(s2);
return result;

}

This method compiles, but with two warnings:

Union.java:5: warning: [unchecked] unchecked call to
HashSet(Collection<? extends E>) as a member of raw type HashSet

Set result = new HashSet(s1);
^

Union.java:6: warning: [unchecked] unchecked call to
addAll(Collection<? extends E>) as a member of raw type Set

result.addAll(s2);
^

To fix these warnings and make the method typesafe, modify the method dec-
laration to declare a type parameter representing the element type for the three sets
(two arguments and the return value) and use the type parameter in the method.
The type parameter list, which declares the type parameter, goes between the
method’s modifiers and its return type. In this example, the type parameter list
is <E> and the return type is Set<E>. The naming conventions for type parameters
are the same for generic methods as for generic types (Items 26, 44):

// Generic method
public static <E> Set<E> union(Set<E> s1, Set<E> s2) {

Set<E> result = new HashSet<E>(s1);
result.addAll(s2);
return result;

}

At least for simple generic methods, that’s all there is to it. Now the method
compiles without generating any warnings and provides type safety as well as ease

CHAPTER 5 GENERICS130

of use. Here’s a simple program to exercise our method. The program contains no
casts and compiles without errors or warnings:

// Simple program to exercise generic method
public static void main(String[] args) {

Set<String> guys = new HashSet<String>(
Arrays.asList("Tom", "Dick", "Harry"));

Set<String> stooges = new HashSet<String>(
Arrays.asList("Larry", "Moe", "Curly"));

Set<String> aflCio = union(guys, stooges);
System.out.println(aflCio);

}

When you run the program, it prints [Moe, Harry, Tom, Curly, Larry, Dick].
The order of the elements is implementation-dependent.

A limitation of the union method is that the types of all three sets (both input
parameters and the return value) have to be the same. You can make the method
more flexible by using bounded wildcard types (Item 28).

One noteworthy feature of generic methods is that you needn’t specify the
value of the type parameter explicitly as you must when invoking generic con-
structors. The compiler figures out the value of the type parameters by examining
the types of the method arguments. In the case of the program above, the compiler
sees that both arguments to union are of type Set<String>, so it knows that the
type parameter E must be String. This process is called type inference.

As discussed in Item 1, you can exploit the type inference provided by generic
method invocation to ease the process of creating parameterized type instances. To
refresh your memory, the need to pass the values of type parameters explicitly
when invoking generic constructors can be annoying. The type parameters appear
redundantly on the left- and right-hand sides of variable declarations:

// Parameterized type instance creation with constructor
Map<String, List<String>> anagrams =

new HashMap<String, List<String>>();

To eliminate this redundancy, write a generic static factory method corre-
sponding to each constructor that you want to use. For example, here is a generic
static factory method corresponding to the parameterless HashMap constructor:

// Generic static factory method
public static <K,V> HashMap<K,V> newHashMap() {

return new HashMap<K,V>();
}

ITEM 27: FAVOR GENERIC METHODS 131

With this generic static factory method, you can replace the repetitious declaration
above with this concise one:

// Parameterized type instance creation with static factory
Map<String, List<String>> anagrams = newHashMap();

It would be nice if the language did the same kind of type inference when
invoking constructors on generic types as it does when invoking generic methods.
Someday it might, but as of release 1.6, it does not.

A related pattern is the generic singleton factory. On occasion, you will need
to create an object that is immutable but applicable to many different types.
Because generics are implemented by erasure (Item 25), you can use a single
object for all required type parameterizations, but you need to write a static fac-
tory method to repeatedly dole out the object for each requested type parameter-
ization. This pattern is most frequently used for function objects (Item 21) such as
Collections.reverseOrder, but it is also used for collections such as Collec-
tions.emptySet.

Suppose you have an interface that describes a function that accepts and
returns a value of some type T:

public interface UnaryFunction<T> {
T apply(T arg);

}

Now suppose that you want to provide an identity function. It would be wasteful
to create a new one each time it’s required, as it’s stateless. If generics were rei-
fied, you would need one identity function per type, but since they’re erased you
need only a generic singleton. Here’s how it looks:

// Generic singleton factory pattern
private static UnaryFunction<Object> IDENTITY_FUNCTION =

new UnaryFunction<Object>() {
public Object apply(Object arg) { return arg; }

};

// IDENTITY_FUNCTION is stateless and its type parameter is
// unbounded so it's safe to share one instance across all types.
@SuppressWarnings("unchecked")
public static <T> UnaryFunction<T> identityFunction() {

return (UnaryFunction<T>) IDENTITY_FUNCTION;
}

CHAPTER 5 GENERICS132

The cast of IDENTITY_FUNCTION to (UnaryFunction<T>) generates an
unchecked cast warning, as UnaryFunction<Object> is not a UnaryFunction<T>
for every T. But the identity function is special: it returns its argument unmodified,
so we know that it is typesafe to use it as a UnaryFunction<T> whatever the value
of T. Therefore, we can confidently suppress the unchecked cast warning that is
generated by this cast. Once we’ve done this, the code compiles without error or
warning.

Here is a sample program that uses our generic singleton as a UnaryFunc-
tion<String> and a UnaryFunction<Number>. As usual, it contains no casts and
compiles without errors or warnings:

// Sample program to exercise generic singleton
public static void main(String[] args) {

String[] strings = { "jute", "hemp", "nylon" };
UnaryFunction<String> sameString = identityFunction();
for (String s : strings)

System.out.println(sameString.apply(s));

Number[] numbers = { 1, 2.0, 3L };
UnaryFunction<Number> sameNumber = identityFunction();
for (Number n : numbers)

System.out.println(sameNumber.apply(n));
}

It is permissible, though relatively rare, for a type parameter to be bounded by
some expression involving that type parameter itself. This is what’s known as a
recursive type bound. The most common use of recursive type bounds is in con-
nection with the Comparable interface, which defines a type’s natural ordering:

public interface Comparable<T> {
int compareTo(T o);

}

The type parameter T defines the type to which elements of the type implementing
Comparable<T> can be compared. In practice, nearly all types can be compared
only to elements of their own type. So, for example, String implements Compa-
rable<String>, Integer implements Comparable<Integer>, and so on.

There are many methods that take a list of elements that implement Compara-
ble, in order to sort the list, search within it, calculate its minimum or maximum,
and the like. To do any of these things, it is required that every element in the list

ITEM 27: FAVOR GENERIC METHODS 133

be comparable to every other element in the list, in other words, that the elements
of the list be mutually comparable. Here is how to express that constraint:

// Using a recursive type bound to express mutual comparability
public static <T extends Comparable<T>> T max(List<T> list) {...}

The type bound <T extends Comparable<T>> may be read as “for every type T
that can be compared to itself,” which corresponds more or less exactly to the
notion of mutual comparability.

Here is a method to go with the declaration above. It calculates the maximum
value of a list according to its elements’ natural order, and it compiles without
errors or warnings:

// Returns the maximum value in a list - uses recursive type bound
public static <T extends Comparable<T>> T max(List<T> list) {

Iterator<T> i = list.iterator();
T result = i.next();
while (i.hasNext()) {

T t = i.next();
if (t.compareTo(result) > 0)

result = t;
}
return result;

}

Recursive type bounds can get much more complex than this, but luckily it
doesn’t happen too often. If you understand this idiom, and its wildcard variant
(Item 28), you’ll be able to deal with many of the recursive type bounds that you
see in practice.

In summary, generic methods, like generic types, are safer and easier to use
than methods that require their clients to cast input parameters and return values.
Like types, you should make sure that your new methods can be used without
casts, which will often mean making them generic. And like types, you should
generify your existing methods to make life easier for new users without breaking
existing clients (Item 23).

CHAPTER 5 GENERICS134

Item 28: Use bounded wildcards to increase API flexibility

As noted in Item 25, parameterized types are invariant. In other words, for any
two distinct types Type1 and Type2, List<Type1> is neither a subtype nor a
supertype of List<Type2>. While it is counterintuitive that List<String> is not a
subtype of List<Object>, it really does make sense. You can put any object into a
List<Object>, but you can put only strings into a List<String>.

Sometimes you need more flexibility than invariant typing can provide. Con-
sider the stack from Item 26. To refresh your memory, here is its public API:

public class Stack<E> {
public Stack();
public void push(E e);
public E pop();
public boolean isEmpty();

}

Suppose we want to add a method that takes a sequence of elements and
pushes them all onto the stack. Here’s a first attempt:

// pushAll method without wildcard type - deficient!
public void pushAll(Iterable<E> src) {

for (E e : src)
push(e);

}

This method compiles cleanly, but it isn’t entirely satisfactory. If the element type
of the Iterable src exactly matches that of the stack, it works fine. But suppose
you have a Stack<Number> and you invoke push(intVal), where intVal is of
type Integer. This works, because Integer is a subtype of Number. So logically,
it seems that this should work, too:

Stack<Number> numberStack = new Stack<Number>();
Iterable<Integer> integers = ... ;
numberStack.pushAll(integers);

If you try it, however, you’ll get this error message because, as noted above,
parameterized types are invariant:

StackTest.java:7: pushAll(Iterable<Number>) in Stack<Number>
cannot be applied to (Iterable<Integer>)

numberStack.pushAll(integers);
^

ITEM 28: USE BOUNDED WILDCARDS TO INCREASE API FLEXIBILITY 135

Luckily, there’s a way out. The language provides a special kind of parameter-
ized type call a bounded wildcard type to deal with situations like this. The type of
the input parameter to pushAll should not be “Iterable of E” but “Iterable of
some subtype of E,” and there is a wildcard type that means precisely that: Iter-
able<? extends E>. (The use of the keyword extends is slightly misleading:
recall from Item 26 that subtype is defined so that every type is a subtype of itself,
even though it does not extend itself.) Let’s modify pushAll to use this type:

// Wildcard type for parameter that serves as an E producer
public void pushAll(Iterable<? extends E> src) {

for (E e : src)
push(e);

}

With this change, not only does Stack compile cleanly, but so does the client code
that wouldn’t compile with the original pushAll declaration. Because Stack and
its client compile cleanly, you know that everything is typesafe.

Now suppose you want to write a popAll method to go with pushAll. The
popAll method pops each element off the stack and adds the elements to the given
collection. Here’s how a first attempt at writing the popAll method might look:

// popAll method without wildcard type - deficient!
public void popAll(Collection<E> dst) {

while (!isEmpty())
dst.add(pop());

}

Again, this compiles cleanly and works fine if the element type of the destination
collection exactly matches that of the stack. But again, it doesn’t seem entirely
satisfactory. Suppose you have a Stack<Number> and variable of type Object. If
you pop an element from the stack and store it in the variable, it compiles and runs
without error. So shouldn’t you be able to do this, too?

Stack<Number> numberStack = new Stack<Number>();
Collection<Object> objects = ... ;
numberStack.popAll(objects);

If you try to compile this client code against the version of popAll above, you’ll
get an error very similar to the one that we got with our first version of pushAll:
Collection<Object> is not a subtype of Collection<Number>. Once again,
wildcard types provide a way out. The type of the input parameter to popAll

CHAPTER 5 GENERICS136

should not be “collection of E” but “collection of some supertype of E” (where
supertype is defined such that E is a supertype of itself [JLS, 4.10]). Again, there is
a wildcard type that means precisely that: Collection<? super E>. Let’s modify
popAll to use it:

// Wildcard type for parameter that serves as an E consumer
public void popAll(Collection<? super E> dst) {

while (!isEmpty())
dst.add(pop());

}

With this change, both Stack and the client code compile cleanly.
The lesson is clear. For maximum flexibility, use wildcard types on input

parameters that represent producers or consumers. If an input parameter is
both a producer and a consumer, then wildcard types will do you no good: you
need an exact type match, which is what you get without any wildcards.

Here is a mnemonic to help you remember which wildcard type to use:

PECS stands for producer-extends, consumer-super.

In other words, if a parameterized type represents a T producer, use <? extends T>;
if it represents a T consumer, use <? super T>. In our Stack example, pushAll’s
src parameter produces E instances for use by the Stack, so the appropriate type
for src is Iterable<? extends E>; popAll’s dst parameter consumes E instances
from the Stack, so the appropriate type for dst is Collection<? super E>. The
PECS mnemonic captures the fundamental principle that guides the use of wild-
card types. Naftalin and Wadler call it the Get and Put Principle [Naftalin07, 2.4].

With this mnemonic in mind, let’s take a look at some method declarations
from previous items. The reduce method in Item 25 has this declaration:

static <E> E reduce(List<E> list, Function<E> f, E initVal)

Although lists can both consume and produce values, the reduce method uses its
list parameter only as an E producer, so its declaration should use a wildcard
type that extends E. The parameter f represents a function that both consumes
and produces E instances, so a wildcard type would be inappropriate for it. Here’s
the resulting method declaration:

// Wildcard type for parameter that serves as an E producer
static <E> E reduce(List<? extends E> list, Function<E> f,

E initVal)

ITEM 28: USE BOUNDED WILDCARDS TO INCREASE API FLEXIBILITY 137

And would this change make any difference in practice? As it turns out, it
would. Suppose you have a List<Integer>, and you want to reduce it with a
Function<Number>. This would not compile with the original declaration, but it
does once you add the bounded wildcard type.

Now let’s look at the union method from Item 27. Here is the declaration:

public static <E> Set<E> union(Set<E> s1, Set<E> s2)

Both parameters, s1 and s2, are E producers, so the PECS mnemonic tells us that
the declaration should be:

public static <E> Set<E> union(Set<? extends E> s1,
Set<? extends E> s2)

Note that the return type is still Set<E>. Do not use wildcard types as return
types. Rather than providing additional flexibility for your users, it would force
them to use wildcard types in client code.

Properly used, wildcard types are nearly invisible to users of a class. They
cause methods to accept the parameters they should accept and reject those they
should reject. If the user of a class has to think about wildcard types, there is
probably something wrong with the class’s API.

Unfortunately, the type inference rules are quite complex. They take up six-
teen pages in the language specification [JLS, 15.12.2.7–8], and they don’t always
do what you want them to. Looking at the revised declaration for union, you
might think that you could do this:

Set<Integer> integers = ... ;
Set<Double> doubles = ... ;
Set<Number> numbers = union(integers, doubles);

If you try it you’ll get this error message:

Union.java:14: incompatible types
found : Set<Number & Comparable<? extends Number &

Comparable<?>>>
required: Set<Number>

Set<Number> numbers = union(integers, doubles);
 ^

Luckily there is a way to deal with this sort of error. If the compiler doesn’t
infer the type that you wish it had, you can tell it what type to use with an explicit

CHAPTER 5 GENERICS138

type parameter. This is not something that you have to do very often, which is a
good thing, as explicit type parameters aren’t very pretty. With the addition of this
explicit type parameter, the program compiles cleanly:

Set<Number> numbers = Union.<Number>union(integers, doubles);

Next let’s turn our attention to the max method from Item 27. Here is the orig-
inal declaration:

public static <T extends Comparable<T>> T max(List<T> list)

Here is a revised declaration that uses wildcard types:

public static <T extends Comparable<? super T>> T max(
List<? extends T> list)

To get the revised declaration from the original one, we apply the PECS trans-
formation twice. The straightforward application is to the parameter list. It pro-
duces T instances, so we change the type from List<T> to List<? extends T>.
The tricky application is to the type parameter T. This is the first time we’ve seen a
wildcard applied to a type parameter. T was originally specified to extend Compa-
rable<T>, but a comparable of T consumes T instances (and produces integers
indicating order relations). Therefore the parameterized type Comparable<T> is
replaced by the bounded wildcard type Comparable<? super T>. Comparables are
always consumers, so you should always use Comparable<? super T> in prefer-
ence to Comparable<T>. The same is true of comparators, so you should always
use Comparator<? super T> in preference to Comparator<T>.

The revised max declaration is probably the most complex method declaration
in the entire book. Does the added complexity really buy you anything? Yes, it
does. Here is a simple example of a list that would be excluded by the original
declaration but is permitted by the revised one:

List<ScheduledFuture<?>> scheduledFutures = ... ;

The reason that you can’t apply the original method declaration to this list is
that java.util.concurrent.ScheduledFuture does not implement Compara-
ble<ScheduledFuture>. Instead, it is a subinterface of Delayed, which extends
Comparable<Delayed>. In other words, a ScheduledFuture instance isn’t merely
comparable to other ScheduledFuture instances; it’s comparable to any Delayed
instance, and that’s enough to cause the original declaration to reject it.

ITEM 28: USE BOUNDED WILDCARDS TO INCREASE API FLEXIBILITY 139

There is one slight problem with the revised declaration for max: it prevents
the method from compiling. Here is the method with the revised declaration:

// Won’t compile - wildcards can require change in method body!
public static <T extends Comparable<? super T>> T max(

List<? extends T> list) {
Iterator<T> i = list.iterator();
T result = i.next();
while (i.hasNext()) {

T t = i.next();
if (t.compareTo(result) > 0)

result = t;
}
return result;

}

Here’s what happens when you try to compile it:

Max.java:7: incompatible types
found : Iterator<capture#591 of ? extends T>
required: Iterator<T>

Iterator<T> i = list.iterator();
 ^

What does this error message mean, and how do we fix the problem? It means
that list is not a List<T>, so its iterator method doesn’t return Iterator<T>.
It returns an iterator of some subtype of T, so we replace the iterator declaration
with this one, which uses a bounded wildcard type:

Iterator<? extends T> i = list.iterator();

That is the only change that we have to make to the body of the method. The ele-
ments returned by the iterator’s next method are of some subtype of T, so they can
be safely stored in a variable of type T.

There is one more wildcard-related topic that bears discussing. There is a
duality between type parameters and wildcards, and many methods can be
declared using one or the other. For example, here are two possible declarations
for a static method to swap two indexed items in a list. The first uses an
unbounded type parameter (Item 27) and the second an unbounded wildcard:

// Two possible declarations for the swap method
public static <E> void swap(List<E> list, int i, int j);
public static void swap(List<?> list, int i, int j);

CHAPTER 5 GENERICS140

Which of these two declarations is preferable, and why? In a public API, the
second is better because it’s simpler. You pass in a list—any list—and the method
swaps the indexed elements. There is no type parameter to worry about. As a rule,
if a type parameter appears only once in a method declaration, replace it with
a wildcard. If it’s an unbounded type parameter, replace it with an unbounded
wildcard; if it’s a bounded type parameter, replace it with a bounded wildcard.

There’s one problem with the second declaration for swap, which uses a wild-
card in preference to a type parameter: the straightforward implementation won’t
compile:

public static void swap(List<?> list, int i, int j) {
list.set(i, list.set(j, list.get(i)));

}

Trying to compile it produces this less-than-helpful error message:

Swap.java:5: set(int,capture#282 of ?) in List<capture#282 of ?>
cannot be applied to (int,Object)

list.set(i, list.set(j, list.get(i)));
 ^

It doesn’t seem right that we can’t put an element back into the list that we just
took it out of. The problem is that the type of list is List<?>, and you can’t put
any value except null into a List<?>. Fortunately, there is a way to implement
this method without resorting to an unsafe cast or a raw type. The idea is to write a
private helper method to capture the wildcard type. The helper method must be a
generic method in order to capture the type. Here’s how it looks:

public static void swap(List<?> list, int i, int j) {
swapHelper(list, i, j);

}

// Private helper method for wildcard capture
private static <E> void swapHelper(List<E> list, int i, int j) {

list.set(i, list.set(j, list.get(i)));
}

The swapHelper method knows that list is a List<E>. Therefore, it knows
that any value it gets out of this list is of type E, and that it’s safe to put any value
of type E into the list. This slightly convoluted implementation of swap compiles
cleanly. It allows us to export the nice wildcard-based declaration of swap, while
taking advantage of the more complex generic method internally. Clients of the

ITEM 28: USE BOUNDED WILDCARDS TO INCREASE API FLEXIBILITY 141

swap method don’t have to confront the more complex swapHelper declaration,
but they do benefit from it

In summary, using wildcard types in your APIs, while tricky, makes the APIs
far more flexible. If you write a library that will be widely used, the proper use of
wildcard types should be considered mandatory. Remember the basic rule: pro-
ducer-extends, consumer-super (PECS). And remember that all comparables
and comparators are consumers.

CHAPTER 5 GENERICS142

Item 29: Consider typesafe heterogeneous containers

The most common use of generics is for collections, such as Set and Map, and sin-
gle-element containers, such as ThreadLocal and AtomicReference. In all of
these uses, it is the container that is parameterized. This limits you to a fixed num-
ber of type parameters per container. Normally that is exactly what you want. A
Set has a single type parameter, representing its element type; a Map has two, rep-
resenting its key and value types; and so forth.

Sometimes, however, you need more flexibility. For example, a database row
can have arbitrarily many columns, and it would be nice to be able to access all of
them in a typesafe manner. Luckily, there is an easy way to achieve this effect. The
idea is to parameterize the key instead of the container. Then present the parame-
terized key to the container to insert or retrieve a value. The generic type system is
used to guarantee that the type of the value agrees with its key.

As a simple example of this approach, consider a Favorites class that allows
its clients to store and retrieve a “favorite” instance of arbitrarily many other
classes. The Class object will play the part of the parameterized key. The reason
this works is that class Class was generified in release 1.5. The type of a class lit-
eral is no longer simply Class, but Class<T>. For example, String.class is of
type Class<String>, and Integer.class is of type Class<Integer>. When a
class literal is passed among methods to communicate both compile-time and
runtime type information, it is called a type token [Bracha04].

The API for the Favorites class is simple. It looks just like a simple map,
except that the key is parameterized instead of the map. The client presents a
Class object when setting and getting favorites. Here is the API:

// Typesafe heterogeneous container pattern - API
public class Favorites {

public <T> void putFavorite(Class<T> type, T instance);
public <T> T getFavorite(Class<T> type);

}

Here is a sample program that exercises the Favorites class, storing, retriev-
ing, and printing a favorite String, Integer, and Class instance:

// Typesafe heterogeneous container pattern - client
public static void main(String[] args) {

Favorites f = new Favorites();
f.putFavorite(String.class, "Java");
f.putFavorite(Integer.class, 0xcafebabe);
f.putFavorite(Class.class, Favorites.class);

ITEM 29: CONSIDER TYPESAFE HETEROGENEOUS CONTAINERS 143

String favoriteString = f.getFavorite(String.class);
int favoriteInteger = f.getFavorite(Integer.class);
Class<?> favoriteClass = f.getFavorite(Class.class);
System.out.printf("%s %x %s%n", favoriteString,

favoriteInteger, favoriteClass.getName());
}

As you might expect, this program prints Java cafebabe Favorites.
A Favorites instance is typesafe: it will never return an Integer when you

ask it for a String. It is also heterogeneous: unlike an ordinary map, all the keys
are of different types. Therefore, we call Favorites a typesafe heterogeneous
container.

The implementation of Favorites is surprisingly tiny. Here it is, in its entirety:

// Typesafe heterogeneous container pattern - implementation
public class Favorites {

private Map<Class<?>, Object> favorites =
new HashMap<Class<?>, Object>();

public <T> void putFavorite(Class<T> type, T instance) {
if (type == null)

throw new NullPointerException("Type is null");
favorites.put(type, instance);

}

public <T> T getFavorite(Class<T> type) {
return type.cast(favorites.get(type));

}
}

There are a few subtle things going on here. Each Favorites instance is
backed by a private Map<Class<?>, Object> called favorites. You might think
that you couldn’t put anything into this Map because of the unbounded wildcard
type, but the truth is quite the opposite. The thing to notice is that the wildcard
type is nested: it’s not the type of the Map that’s a wildcard type but the type of its
key. This means that every key can have a different parameterized type: one can be
Class<String>, the next Class<Integer>, and so on. That’s where the heteroge-
neity comes from.

The next thing to notice is that the value type of the favorites Map is simply
Object. In other words, the Map does not guarantee the type relationship between
keys and values, which is that every value is of the type represented by its key. In
fact, Java’s type system is not powerful enough to express this. But we know that
it’s true, and we take advantage of it when it comes time to retrieve a favorite.

CHAPTER 5 GENERICS144

The putFavorite implementation is trivial: it simply puts into favorites a
mapping from the given Class object to the given favorite instance. As noted, this
discards the “type linkage” between the key and the value; it loses the knowledge
that the value is an instance of the key. But that’s OK, because the getFavorites
method can and does reestablish this linkage.

The implementation of the getFavorite method is trickier than that of put-
Favorite. First it gets from the favorites map the value corresponding to the
given Class object. This is the correct object reference to return, but it has the
wrong compile-time type. Its type is simply Object (the value type of the favor-
ites map) and we need to return a T. So, the getFavorite implementation
dynamically casts the object reference to the type represented by the Class object,
using Class’s cast method.

The cast method is the dynamic analog of Java’s cast operator. It simply
checks that its argument is an instance of the type represented by the Class object.
If so, it returns the argument; otherwise it throws a ClassCastException. We
know that the cast invocation in getFavorite will never throw ClassCastExcep-
tion, assuming the client code compiled cleanly. That is to say, we know that the
values in the favorites map always match the types of the keys.

So what does the cast method do for us, given that it simply returns its argu-
ment? The signature of the cast method takes full advantage of the fact that class
Class has been generified. Its return type is the type parameter of the Class
object:

public class Class<T> {
T cast(Object obj);

}

This is precisely what’s needed by the getFavorite method. It is what allows us
to make Favorites typesafe without resorting to an unchecked cast to T.

There are two limitations to the Favorites class that are worth noting. First, a
malicious client could easily corrupt the type safety of a Favorites instance, sim-
ply by using a Class object in its raw form. But the resulting client code would
generate an unchecked warning when it was compiled. This is no different from
the normal collection implementations such as HashSet and HashMap. You can
easily put a String into a HashSet<Integer> by using the raw type HashSet
(Item 23). That said, you can have runtime type safety if you’re willing to pay for
it. The way to ensure that Favorites never violates its type invariant is to have the

ITEM 29: CONSIDER TYPESAFE HETEROGENEOUS CONTAINERS 145

putFavorite method check that instance is indeed an instance of the type repre-
sented by type. And we already know how to do this. Just use a dynamic cast:

// Achieving runtime type safety with a dynamic cast
public <T> void putFavorite(Class<T> type, T instance) {

favorites.put(type, type.cast(instance));
}

There are collection wrappers in java.util.Collections that play the same
trick. They are called checkedSet, checkedList, checkedMap, and so forth. Their
static factories take a Class object (or two) in addition to a collection (or map).
The static factories are generic methods, ensuring that the compile-time types of
the Class object and the collection match. The wrappers add reification to the col-
lections they wrap. For example, the wrapper throws a ClassCastException at
runtime if someone tries to put Coin into your Collection<Stamp>. These wrap-
pers are useful for tracking down who adds an incorrectly typed element to a col-
lection in an application that mixes generic and legacy code.

The second limitation of the Favorites class is that it cannot be used on a
non-reifiable type (Item 25). In other words, you can store your favorite String or
String[], but not your favorite List<String>. If you try to store your favorite
List<String>, your program won’t compile. The reason is that you can’t get a
Class object for List<String>: List<String>.class is a syntax error, and it’s a
good thing, too. List<String> and List<Integer> share a single Class object,
which is List.class. It would wreak havoc with the internals of a Favorites
object if the “type literals” List<String>.class and List<Integer>.class
were legal and returned the same object reference.

There is no entirely satisfactory workaround for the second limitation. There
is a technique called super type tokens that goes a long way toward addressing the
limitation, but this technique has limitations of its own [Gafter07].

The type tokens used by Favorites are unbounded: getFavorite and put-
Favorite accept any Class object. Sometimes you may need to limit the types
that can be passed to a method. This can be achieved with a bounded type token,
which is simply a type token that places a bound on what type can be represented,
using a bounded type parameter (Item 27) or a bounded wildcard (Item 28).

The annotations API (Item 35) makes extensive use of bounded type tokens.
For example, here is the method to read an annotation at runtime. This method

CHAPTER 5 GENERICS146

comes from the AnnotatedElement interface, which is implemented by the reflec-
tive types that represent classes, methods, fields, and other program elements:

public <T extends Annotation>
T getAnnotation(Class<T> annotationType);

The argument annotationType is a bounded type token representing an annota-
tion type. The method returns the element’s annotation of that type, if it has one,
or null, if it doesn’t. In essence, an annotated element is a typesafe heterogeneous
container whose keys are annotation types.

Suppose you have an object of type Class<?> and you want to pass it to a
method that requires a bounded type token, such as getAnnotation. You could
cast the object to Class<? extends Annotation>, but this cast is unchecked, so it
would generate a compile-time warning (Item 24). Luckily, class Class provides
an instance method that performs this sort of cast safely (and dynamically). The
method is called asSubclass, and it casts the Class object on which it’s called to
represent a subclass of the class represented by its argument. If the cast succeeds,
the method returns its argument; if it fails, it throws a ClassCastException.

Here’s how you use the asSubclass method to read an annotation whose type
is unknown at compile time. This method compiles without error or warning:

// Use of asSubclass to safely cast to a bounded type token
static Annotation getAnnotation(AnnotatedElement element,
 String annotationTypeName) {

Class<?> annotationType = null; // Unbounded type token
try {

annotationType = Class.forName(annotationTypeName);
} catch (Exception ex) {

throw new IllegalArgumentException(ex);
}
return element.getAnnotation(

annotationType.asSubclass(Annotation.class));
}

In summary, the normal use of generics, exemplified by the collections APIs,
restricts you to a fixed number of type parameters per container. You can get
around this restriction by placing the type parameter on the key rather than the
container. You can use Class objects as keys for such typesafe heterogeneous
containers. A Class object used in this fashion is called a type token. You can also
use a custom key type. For example, you could have a DatabaseRow type repre-
senting a database row (the container), and a generic type Column<T> as its key.

147

C H A P T E R 6
Enums and Annotations

IN release 1.5, two families of reference types were added to the language: a new
kind of class called an enum type, and a new kind of interface called an annotation
type. This chapter discusses best practices for using these new type families.

Item 30: Use enums instead of int constants

An enumerated type is a type whose legal values consist of a fixed set of con-
stants, such as the seasons of the year, the planets in the solar system, or the suits
in a deck of playing cards. Before enum types were added to the language, a com-
mon pattern for representing enumerated types was to declare a group of named
int constants, one for each member of the type:

// The int enum pattern - severely deficient!
public static final int APPLE_FUJI = 0;
public static final int APPLE_PIPPIN = 1;
public static final int APPLE_GRANNY_SMITH = 2;

public static final int ORANGE_NAVEL = 0;
public static final int ORANGE_TEMPLE = 1;
public static final int ORANGE_BLOOD = 2;

This technique, known as the int enum pattern, has many shortcomings. It
provides nothing in the way of type safety and little in the way of convenience.
The compiler won’t complain if you pass an apple to a method that expects an
orange, compare apples to oranges with the == operator, or worse:

// Tasty citrus flavored applesauce!
int i = (APPLE_FUJI - ORANGE_TEMPLE) / APPLE_PIPPIN;

CHAPTER 6 ENUMS AND ANNOTATIONS148

Note that the name of each apple constant is prefixed with APPLE_ and the
name of each orange constant is prefixed with ORANGE_. This is because Java
doesn’t provide namespaces for int enum groups. Prefixes prevent name clashes
when two int enum groups have identically named constants.

Programs that use the int enum pattern are brittle. Because int enums are
compile-time constants, they are compiled into the clients that use them. If the int
associated with an enum constant is changed, its clients must be recompiled. If
they aren’t, they will still run, but their behavior will be undefined.

There is no easy way to translate int enum constants into printable strings. If
you print such a constant or display it from a debugger, all you see is a number,
which isn’t very helpful. There is no reliable way to iterate over all the int enum
constants in a group, or even to obtain the size of an int enum group.

You may encounter a variant of this pattern in which String constants are
used in place of int constants. This variant, known as the String enum pattern, is
even less desirable. While it does provide printable strings for its constants, it can
lead to performance problems because it relies on string comparisons. Worse, it
can lead naive users to hard-code string constants into client code instead of using
field names. If such a hard-coded string constant contains a typographical error, it
will escape detection at compile time and result in bugs at runtime.

Luckily, as of release 1.5, the language provides an alternative that avoids the
shortcomings of the int and string enum patterns and provides many added ben-
efits. It is the (JLS, 8.9). Here’s how it looks in its simplest form:

public enum Apple { FUJI, PIPPIN, GRANNY_SMITH }
public enum Orange { NAVEL, TEMPLE, BLOOD }

On the surface, these enum types may appear similar to those of other languages,
such as C, C++, and C#, but appearances are deceiving. Java’s enum types are
full-fledged classes, far more powerful than their counterparts in these other lan-
guages, where enums are essentially int values.

The basic idea behind Java’s enum types is simple: they are classes that export
one instance for each enumeration constant via a public static final field. Enum
types are effectively final, by virtue of having no accessible constructors. Because
clients can neither create instances of an enum type nor extend it, there can be no
instances but the declared enum constants. In other words, enum types are
instance-controlled (page 6). They are a generalization of singletons (Item 3),
which are essentially single-element enums. For readers familiar with the first edi-
tion of this book, enum types provide linguistic support for the typesafe enum pat-
tern [Bloch01, Item 21].

ITEM 30: USE ENUMS INSTEAD OF INT CONSTANTS 149

Enums provide compile-time type safety. If you declare a parameter to be of
type Apple, you are guaranteed that any non-null object reference passed to the
parameter is one of the three valid Apple values. Attempts to pass values of the
wrong type will result in compile-time errors, as will attempts to assign an expres-
sion of one enum type to a variable of another, or to use the == operator to com-
pare values of different enum types.

Enum types with identically named constants coexist peacefully because each
type has its own namespace. You can add or reorder constants in an enum type
without recompiling its clients because the fields that export the constants provide
a layer of insulation between an enum type and its clients: the constant values are
not compiled into the clients as they are in the int enum pattern. Finally, you can
translate enums into printable strings by calling their toString method.

In addition to rectifying the deficiencies of int enums, enum types let you add
arbitrary methods and fields and implement arbitrary interfaces. They provide
high-quality implementations of all the Object methods (Chapter 3), they imple-
ment Comparable (Item 12) and Serializable (Chapter 11), and their serialized
form is designed to withstand most changes to the enum type.

So why would you want to add methods or fields to an enum type? For start-
ers, you might want to associate data with its constants. Our Apple and Orange
types, for example, might benefit from a method that returns the color of the fruit,
or one that returns an image of it. You can augment an enum type with any method
that seems appropriate. An enum type can start life as a simple collection of enum
constants and evolve over time into a full-featured abstraction.

For a nice example of a rich enum type, consider the eight planets of our solar
system. Each planet has a mass and a radius, and from these two attributes you can
compute its surface gravity. This in turn lets you compute the weight of an object
on the planet’s surface, given the mass of the object. Here’s how this enum looks.
The numbers in parentheses after each enum constant are parameters that are
passed to its constructor. In this case, they are the planet’s mass and radius:

// Enum type with data and behavior
public enum Planet {

MERCURY(3.302e+23, 2.439e6),
VENUS (4.869e+24, 6.052e6),
EARTH (5.975e+24, 6.378e6),
MARS (6.419e+23, 3.393e6),
JUPITER(1.899e+27, 7.149e7),
SATURN (5.685e+26, 6.027e7),
URANUS (8.683e+25, 2.556e7),
NEPTUNE(1.024e+26, 2.477e7);

CHAPTER 6 ENUMS AND ANNOTATIONS150

private final double mass; // In kilograms
private final double radius; // In meters
private final double surfaceGravity; // In m / s^2

// Universal gravitational constant in m^3 / kg s^2
private static final double G = 6.67300E-11;

// Constructor
Planet(double mass, double radius) {

this.mass = mass;
this.radius = radius;
surfaceGravity = G * mass / (radius * radius);

}

public double mass() { return mass; }
public double radius() { return radius; }
public double surfaceGravity() { return surfaceGravity; }

public double surfaceWeight(double mass) {
return mass * surfaceGravity; // F = ma

}
}

It is easy to write a rich enum type such as Planet. To associate data with
enum constants, declare instance fields and write a constructor that takes the
data and stores it in the fields. Enums are by their nature immutable, so all fields
should be final (Item 15). They can be public, but it is better to make them private
and provide public accessors (Item 14). In the case of Planet, the constructor also
computes and stores the surface gravity, but this is just an optimization. The grav-
ity could be recomputed from the mass and radius each time it was used by the
surfaceWeight method, which takes an object’s mass and returns its weight on
the planet represented by the constant.

While the Planet enum is simple, it is surprisingly powerful. Here is a short
program that takes the earth-weight of an object (in any unit) and prints a nice
table of the object’s weight on all eight planets (in the same unit):

public class WeightTable {
public static void main(String[] args) {

double earthWeight = Double.parseDouble(args[0]);
double mass = earthWeight / Planet.EARTH.surfaceGravity();
for (Planet p : Planet.values())

System.out.printf("Weight on %s is %f%n",
p, p.surfaceWeight(mass));

}
}

ITEM 30: USE ENUMS INSTEAD OF INT CONSTANTS 151

Note that Planet, like all enums, has a static values method that returns an array
of its values in the order they were declared. Note also that the toString method
returns the declared name of each enum value, enabling easy printing by println
and printf. If you’re dissatisfied with this string representation, you can change it
by overriding the toString method. Here is the result of running our little
WeightTable program with the command line argument 175:

Weight on MERCURY is 66.133672
Weight on VENUS is 158.383926
Weight on EARTH is 175.000000
Weight on MARS is 66.430699
Weight on JUPITER is 442.693902
Weight on SATURN is 186.464970
Weight on URANUS is 158.349709
Weight on NEPTUNE is 198.846116

If this is the first time you’ve seen Java’s printf method in action, note that it
differs from C’s in that you use %n where you’d use \n in C.

Some behaviors associated with enum constants may need to be used only
from within the class or package in which the enum is defined. Such behaviors are
best implemented as private or package-private methods. Each constant then car-
ries with it a hidden collection of behaviors that allows the class or package con-
taining the enum to react appropriately when presented with the constant. Just as
with other classes, unless you have a compelling reason to expose an enum
method to its clients, declare it private or, if need be, package-private (Item 13).

If an enum is generally useful, it should be a top-level class; if its use is tied to
a specific top-level class, it should be a member class of that top-level class (Item
22). For example, the java.math.RoundingMode enum represents a rounding
mode for decimal fractions. These rounding modes are used by the BigDecimal
class, but they provide a useful abstraction that is not fundamentally tied to Big-
Decimal. By making RoundingMode a top-level enum, the library designers
encourage any programmer who needs rounding modes to reuse this enum, lead-
ing to increased consistency across APIs.

The techniques demonstrated in the Planet example are sufficient for most
enum types, but sometimes you need more. There is different data associated with
each Planet constant, but sometimes you need to associate fundamentally differ-
ent behavior with each constant. For example, suppose you are writing an enum
type to represent the operations on a basic four-function calculator, and you want

CHAPTER 6 ENUMS AND ANNOTATIONS152

to provide a method to perform the arithmetic operation represented by each con-
stant. One way to achieve this is to switch on the value of the enum:

// Enum type that switches on its own value - questionable
public enum Operation {

PLUS, MINUS, TIMES, DIVIDE;

// Do the arithmetic op represented by this constant
double apply(double x, double y) {

switch(this) {
case PLUS: return x + y;
case MINUS: return x - y;
case TIMES: return x * y;
case DIVIDE: return x / y;

}
throw new AssertionError("Unknown op: " + this);

}
}

This code works, but is isn’t very pretty. It won’t compile without the throw
statement because the end of the method is technically reachable, even though it
will never be reached [JLS, 14.2.1]. Worse, the code is fragile. If you add a new
enum constant but forget to add a corresponding case to the switch, the enum will
still compile, but it will fail at runtime when you try to apply the new operation.

Luckily, there is a better way to associate a different behavior with each enum
constant: declare an abstract apply method in the enum type, and override it with
a concrete method for each constant in a constant-specific class body. Such meth-
ods are knows as constant-specific method implementations:

// Enum type with constant-specific method implementations
public enum Operation {

PLUS { double apply(double x, double y){return x + y;} },
MINUS { double apply(double x, double y){return x - y;} },
TIMES { double apply(double x, double y){return x * y;} },
DIVIDE { double apply(double x, double y){return x / y;} };

abstract double apply(double x, double y);
}

If you add a new constant to the second version of Operation, it is unlikely
that you’ll forget to provide an apply method, as the method immediately follows
each constant declaration. In the unlikely event that you do forget, the compiler
will remind you, as abstract methods in an enum type must be overridden with
concrete methods in all of its constants.

ITEM 30: USE ENUMS INSTEAD OF INT CONSTANTS 153

Constant-specific method implementations can be combined with constant-
specific data. For example, here is a version of Operation that overrides the
toString method to return the symbol commonly associated with the operation:

// Enum type with constant-specific class bodies and data
public enum Operation {

PLUS("+") {
double apply(double x, double y) { return x + y; }

},
MINUS("-") {

double apply(double x, double y) { return x - y; }
},
TIMES("*") {

double apply(double x, double y) { return x * y; }
},
DIVIDE("/") {

double apply(double x, double y) { return x / y; }
};
private final String symbol;
Operation(String symbol) { this.symbol = symbol; }
@Override public String toString() { return symbol; }

abstract double apply(double x, double y);
}

In some cases, overriding toString in an enum is very useful. For example,
the toString implementation above makes it easy to print arithmetic expressions,
as demonstrated by this little program:

public static void main(String[] args) {
double x = Double.parseDouble(args[0]);
double y = Double.parseDouble(args[1]);
for (Operation op : Operation.values())

System.out.printf("%f %s %f = %f%n",
x, op, y, op.apply(x, y));

}

Running this program with 2 and 4 as command line arguments produces the
following output:

2.000000 + 4.000000 = 6.000000
2.000000 - 4.000000 = -2.000000
2.000000 * 4.000000 = 8.000000
2.000000 / 4.000000 = 0.500000

CHAPTER 6 ENUMS AND ANNOTATIONS154

Enum types have an automatically generated valueOf(String) method that
translates a constant’s name into the constant itself. If you override the toString
method in an enum type, consider writing a fromString method to translate the
custom string representation back to the corresponding enum. The following code
(with the type name changed appropriately) will do the trick for any enum, so long
as each constant has a unique string representation:

// Implementing a fromString method on an enum type
private static final Map<String, Operation> stringToEnum

= new HashMap<String, Operation>();
static { // Initialize map from constant name to enum constant

for (Operation op : values())
stringToEnum.put(op.toString(), op);

}
// Returns Operation for string, or null if string is invalid
public static Operation fromString(String symbol) {

return stringToEnum.get(symbol);
}

Note that the Operation constants are put into the stringToEnum map from a
static block that runs after the constants have been created. Trying to make each
constant put itself into the map from its own constructor would cause a compila-
tion error. This is a good thing, because it would cause a NullPointerException
if it were legal. Enum constructors aren’t permitted to access the enum’s static
fields, except for compile-time constant fields. This restriction is necessary
because these static fields have not yet been initialized when the constructors run.

A disadvantage of constant-specific method implementations is that they
make it harder to share code among enum constants. For example, consider an
enum representing the days of the week in a payroll package. This enum has a
method that calculates a worker’s pay for that day given the worker’s base salary
(per hour) and the number of hours worked on that day. On the five weekdays, any
time worked in excess of a normal shift generates overtime pay; on the two week-
end days, all work generates overtime pay. With a switch statement, it’s easy to
do this calculation by applying multiple case labels to each of two code fragments.
For brevity’s sake, the code in this example uses double, but note that double is
not an appropriate data type for a payroll application (Item 48):

// Enum that switches on its value to share code - questionable
enum PayrollDay {

MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY,
SATURDAY, SUNDAY;
private static final int HOURS_PER_SHIFT = 8;

ITEM 30: USE ENUMS INSTEAD OF INT CONSTANTS 155

double pay(double hoursWorked, double payRate) {
double basePay = hoursWorked * payRate;

double overtimePay; // Calculate overtime pay
switch(this) {

case SATURDAY: case SUNDAY:
overtimePay = hoursWorked * payRate / 2;

default: // Weekdays
overtimePay = hoursWorked <= HOURS_PER_SHIFT ?
0 : (hoursWorked - HOURS_PER_SHIFT) * payRate / 2;

break;
}

return basePay + overtimePay;
}

}

This code is undeniably concise, but it is dangerous from a maintenance per-
spective. Suppose you add an element to the enum, perhaps a special value to rep-
resent a vacation day, but forget to add a corresponding case to the switch
statement. The program will still compile, but the pay method will silently pay the
worker the same amount for a vacation day as for an ordinary weekday.

To perform the pay calculation safely with constant-specific method imple-
mentations, you would have to duplicate the overtime pay computation for each
constant, or move the computation into two helper methods (one for weekdays
and one for weekend days) and invoke the appropriate helper method from each
constant. Either approach would result in a fair amount of boilerplate code, sub-
stantially reducing readability and increasing the opportunity for error.

The boilerplate could be reduced by replacing the abstract overtimePay
method on PayrollDay with a concrete method that performs the overtime calcu-
lation for weekdays. Then only the weekend days would have to override the
method. But this would have the same disadvantage as the switch statement: if
you added another day without overriding the overtimePay method, you would
silently inherit the weekday calculation.

What you really want is to be forced to choose an overtime pay strategy each
time you add an enum constant. Luckily, there is a nice way to achieve this. The
idea is to move the overtime pay computation into a private nested enum, and to
pass an instance of this strategy enum to the constructor for the PayrollDay enum.
The PayrollDay enum then delegates the overtime pay calculation to the strategy
enum, eliminating the need for a switch statement or constant-specific method

CHAPTER 6 ENUMS AND ANNOTATIONS156

implementation in PayrollDay. While this pattern is less concise than the switch
statement, it is safer and more flexible:

// The strategy enum pattern
enum PayrollDay {

MONDAY(PayType.WEEKDAY), TUESDAY(PayType.WEEKDAY),
WEDNESDAY(PayType.WEEKDAY), THURSDAY(PayType.WEEKDAY),
FRIDAY(PayType.WEEKDAY),
SATURDAY(PayType.WEEKEND), SUNDAY(PayType.WEEKEND);

private final PayType payType;
PayrollDay(PayType payType) { this.payType = payType; }

double pay(double hoursWorked, double payRate) {
return payType.pay(hoursWorked, payRate);

}
// The strategy enum type
private enum PayType {

WEEKDAY {
double overtimePay(double hours, double payRate) {

return hours <= HOURS_PER_SHIFT ? 0 :
(hours - HOURS_PER_SHIFT) * payRate / 2;

}
},
WEEKEND {

double overtimePay(double hours, double payRate) {
return hours * payRate / 2;

}
};
private static final int HOURS_PER_SHIFT = 8;

abstract double overtimePay(double hrs, double payRate);

double pay(double hoursWorked, double payRate) {
double basePay = hoursWorked * payRate;
return basePay + overtimePay(hoursWorked, payRate);

}
}

}

If switch statements on enums are not a good choice for implementing con-
stant-specific behavior on enums, what are they good for? Switches on enums
are good for augmenting external enum types with constant-specific behavior.
For example, suppose the Operation enum is not under your control, and you

ITEM 30: USE ENUMS INSTEAD OF INT CONSTANTS 157

wish it had an instance method to return the inverse of each operation. You can
simulate the effect with the following static method:

// Switch on an enum to simulate a missing method
public static Operation inverse(Operation op) {

switch(op) {
case PLUS: return Operation.MINUS;
case MINUS: return Operation.PLUS;
case TIMES: return Operation.DIVIDE;
case DIVIDE: return Operation.TIMES;
default: throw new AssertionError("Unknown op: " + op);

}
}

Enums are, generally speaking, comparable in performance to int constants.
A minor performance disadvantage of enums over int constants is that there is a
space and time cost to load and initialize enum types. Except on resource-con-
strained devices, such as cell phones and toasters, this is unlikely to be noticeable
in practice.

So when should you use enums? Anytime you need a fixed set of constants.
Of course, this includes “natural enumerated types,” such as the planets, the days
of the week, and the chess pieces. But it also includes other sets for which you
know all the possible values at compile time, such as choices on a menu, operation
codes, and command line flags. It is not necessary that the set of constants in an
enum type stay fixed for all time. The enum feature was specifically designed to
allow for binary compatible evolution of enum types.

In summary, the advantages of enum types over int constants are compelling.
Enums are far more readable, safer, and more powerful. Many enums require no
explicit constructors or members, but many others benefit from associating data
with each constant and providing methods whose behavior is affected by this data.
Far fewer enums benefit from associating multiple behaviors with a single
method. In this relatively rare case, prefer constant-specific methods to enums that
switch on their own values. Consider the strategy enum pattern if multiple enum
constants share common behaviors.

CHAPTER 6 ENUMS AND ANNOTATIONS158

Item 31: Use instance fields instead of ordinals

Many enums are naturally associated with a single int value. All enums have an
ordinal method, which returns the numerical position of each enum constant in
its type. You may be tempted to derive an associated int value from the ordinal:

// Abuse of ordinal to derive an associated value - DON'T DO THIS
public enum Ensemble {

SOLO, DUET, TRIO, QUARTET, QUINTET,
SEXTET, SEPTET, OCTET, NONET, DECTET;

public int numberOfMusicians() { return ordinal() + 1; }
}

While this enum works, it is a maintenance nightmare. If the constants are
reordered, the numberOfMusicians method will break. If you want to add a sec-
ond enum constant associated with an int value that you’ve already used, you’re
out of luck. For example, it might be nice to add a constant for double quartet,
which, like an octet, consists of eight musicians, but there is no way to do it.

Also, you can’t add a constant for an int value without adding constants for
all intervening int values. For example, suppose you want to add a constant rep-
resenting a triple quartet, which consists of twelve musicians. There is no stan-
dard term for an ensemble consisting of eleven musicians, so you are forced to
add a dummy constant for the unused int value (11). At best, this is ugly. If many
int values are unused, it’s impractical.

Luckily, there is a simple solution to these problems. Never derive a value
associated with an enum from its ordinal; store it in an instance field instead:

public enum Ensemble {
SOLO(1), DUET(2), TRIO(3), QUARTET(4), QUINTET(5),
SEXTET(6), SEPTET(7), OCTET(8), DOUBLE_QUARTET(8),
NONET(9), DECTET(10), TRIPLE_QUARTET(12);

private final int numberOfMusicians;
Ensemble(int size) { this.numberOfMusicians = size; }
public int numberOfMusicians() { return numberOfMusicians; }

}

The Enum specification has this to say about ordinal: “Most programmers
will have no use for this method. It is designed for use by general-purpose enum-
based data structures such as EnumSet and EnumMap.” Unless you are writing such
a data structure, you are best off avoiding the ordinal method entirely.

ITEM 32: USE ENUMSET INSTEAD OF BIT FIELDS 159

Item 32: Use EnumSet instead of bit fields

If the elements of an enumerated type are used primarily in sets, it is traditional to
use the int enum pattern (Item 30), assigning a different power of 2 to each con-
stant:

// Bit field enumeration constants - OBSOLETE!
public class Text {

public static final int STYLE_BOLD = 1 << 0; // 1
public static final int STYLE_ITALIC = 1 << 1; // 2
public static final int STYLE_UNDERLINE = 1 << 2; // 4
public static final int STYLE_STRIKETHROUGH = 1 << 3; // 8

// Parameter is bitwise OR of zero or more STYLE_ constants
public void applyStyles(int styles) { ... }

}

This representation lets you use the bitwise OR operation to combine several con-
stants into a set, known as a bit field:

text.applyStyles(STYLE_BOLD | STYLE_ITALIC);

The bit field representation also lets you perform set operations such as union
and intersection efficiently using bitwise arithmetic. But bit fields have all the dis-
advantages of int enum constants and more. It is even harder to interpret a bit
field than a simple int enum constant when it is printed as a number. Also, there
is no easy way to iterate over all of the elements represented by a bit field.

Some programmers who use enums in preference to int constants still cling
to the use of bit fields when they need to pass around sets of constants. There is no
reason to do this; a better alternative exists. The java.util package provides the
EnumSet class to efficiently represent sets of values drawn from a single enum
type. This class implements the Set interface, providing all of the richness, type
safety, and interoperability you get with any other Set implementation. But inter-
nally, each EnumSet is represented as a bit vector. If the underlying enum type has
sixty-four or fewer elements—and most do—the entire EnumSet is represented
with a single long (page 7), so its performance is comparable to that of a bit field.
Bulk operations, such as removeAll and retainAll, are implemented using bit-
wise arithmetic, just as you’d do manually for bit fields. But you are insulated
from the ugliness and error-proneness of manual bit twiddling: the EnumSet does
the hard work for you.

CHAPTER 6 ENUMS AND ANNOTATIONS160

Here is how the previous example looks when modified to use enums instead
of bit fields. It is shorter, clearer, and safer:

// EnumSet - a modern replacement for bit fields
public class Text {

public enum Style { BOLD, ITALIC, UNDERLINE, STRIKETHROUGH }

// Any Set could be passed in, but EnumSet is clearly best
public void applyStyles(Set<Style> styles) { ... }

}

Here is client code that passes an EnumSet instance to the applyStyles method.
EnumSet provides a rich set of static factories for easy set creation, one of which is
illustrated in this code:

text.applyStyles(EnumSet.of(Style.BOLD, Style.ITALIC));

Note that the applyStyles method takes a Set<Style> rather than an Enum-
Set<Style>. While it seems likely that all clients would pass an EnumSet to the
method, it is good practice to accept the interface type rather than the implementa-
tion type. This allows for the possibility of an unusual client to pass in some other
Set implementation and has no disadvantages to speak of (page 190).

In summary, just because an enumerated type will be used in sets, there is
no reason to represent it with bit fields. The EnumSet class combines the con-
ciseness and performance of bit fields with all the many advantages of enum types
described in Item 30. The one real disadvantage of EnumSet is that it is not, as of
release 1.6, possible to create an immutable EnumSet, but this will likely be reme-
died in an upcoming release. In the meantime, you can wrap an EnumSet with
Collections.unmodifiableSet, but conciseness and performance will suffer.

ITEM 33: USE ENUMMAP INSTEAD OF ORDINAL INDEXING 161

Item 33: Use EnumMap instead of ordinal indexing

Occasionally you may see code that uses the ordinal method (Item 31) to index
into an array. For example, consider this simplistic class meant to represent a culi-
nary herb:

public class Herb {
public enum Type { ANNUAL, PERENNIAL, BIENNIAL }

private final String name;
private final Type type;

Herb(String name, Type type) {

this.name = name;
this.type = type;

}

@Override public String toString() {
return name;

}
}

Now suppose you have an array of herbs representing the plants in a garden,
and you want to list these plants organized by type (annual, perennial, or biennial).
To do this, you construct three sets, one for each type, and iterate through the gar-
den, placing each herb in the appropriate set. Some programmers would do this by
putting the sets into an array indexed by the type’s ordinal:

// Using ordinal() to index an array - DON'T DO THIS!
Herb[] garden = ... ;

Set<Herb>[] herbsByType = // Indexed by Herb.Type.ordinal()
(Set<Herb>[]) new Set[Herb.Type.values().length];

for (int i = 0; i < herbsByType.length; i++)
herbsByType[i] = new HashSet<Herb>();

for (Herb h : garden)
herbsByType[h.type.ordinal()].add(h);

// Print the results
for (int i = 0; i < herbsByType.length; i++) {

System.out.printf("%s: %s%n",
Herb.Type.values()[i], herbsByType[i]);

}

CHAPTER 6 ENUMS AND ANNOTATIONS162

This technique works, but it is fraught with problems. Because arrays are not
compatible with generics (Item 25), the program requires an unchecked cast and
will not compile cleanly. Because the array does not know what its index repre-
sents, you have to label the output manually. But the most serious problem with
this technique is that when you access an array that is indexed by an enum’s ordi-
nal, it is your responsibility to use the correct int value; ints do not provide the
type safety of enums. If you use the wrong value, the program will silently do the
wrong thing or—if you’re lucky—throw an ArrayIndexOutOfBoundsException.

Luckily, there is a much better way to achieve the same effect. The array is
effectively serving as a map from the enum to a value, so you might as well use a
Map. More specifically, there is a very fast Map implementation designed for use
with enum keys, known as java.util.EnumMap. Here is how the program looks
when it is rewritten to use EnumMap:

// Using an EnumMap to associate data with an enum
Map<Herb.Type, Set<Herb>> herbsByType =

new EnumMap<Herb.Type, Set<Herb>>(Herb.Type.class);
for (Herb.Type t : Herb.Type.values())

herbsByType.put(t, new HashSet<Herb>());
for (Herb h : garden)

herbsByType.get(h.type).add(h);
System.out.println(herbsByType);

This program is shorter, clearer, safer, and comparable in speed to the original
version. There is no unsafe cast; no need to label the output manually, as the map
keys are enums that know how to translate themselves to printable strings; and no
possibility for error in computing array indices. The reason that EnumMap is com-
parable in speed to an ordinal-indexed array is that EnumMap uses such an array
internally. But it hides this implementation detail from the programmer, combin-
ing the richness and type safety of a Map with the speed of an array. Note that the
EnumMap constructor takes the Class object of the key type: this is a bounded type
token, which provides runtime generic type information (Item 29).

You may see an array of arrays indexed (twice!) by ordinals used to represent
a mapping from two enum values. For example, this program uses such an array to
map two phases to a phase transition (liquid to solid is freezing, liquid to gas is
boiling, and so forth):

// Using ordinal() to index array of arrays - DON'T DO THIS!
public enum Phase { SOLID, LIQUID, GAS;

public enum Transition {
MELT, FREEZE, BOIL, CONDENSE, SUBLIME, DEPOSIT;

ITEM 33: USE ENUMMAP INSTEAD OF ORDINAL INDEXING 163

// Rows indexed by src-ordinal, cols by dst-ordinal
private static final Transition[][] TRANSITIONS = {

{ null, MELT, SUBLIME },
{ FREEZE, null, BOIL },
{ DEPOSIT, CONDENSE, null }

};

// Returns the phase transition from one phase to another
public static Transition from(Phase src, Phase dst) {

return TRANSITIONS[src.ordinal()][dst.ordinal()];
}

}
}

This program works and may even appear elegant, but appearances can be
deceiving. Like the simpler herb garden example above, the compiler has no way
of knowing the relationship between ordinals and array indices. If you make a
mistake in the transition table, or forget to update it when you modify the Phase or
Phase.Transition enum type, your program will fail at runtime. The failure may
take the form of an ArrayIndexOutOfBoundsException, a NullPointerExcep-
tion, or (worse) silent erroneous behavior. And the size of the table is quadratic in
the number of phases, even if the number of non-null entries is smaller.

Again, you can do much better with EnumMap. Because each phase transition
is indexed by a pair of phase enums, you are best off representing the relationship
as a map from one enum (the source phase) to a map from the second enum (the
destination phase) to the result (the phase transition). The two phases associated
with a phase transition are best captured by associating data with the phase transi-
tion enum, which is then used to initialize the nested EnumMap:

// Using a nested EnumMap to associate data with enum pairs
public enum Phase {

SOLID, LIQUID, GAS;

public enum Transition {
MELT(SOLID, LIQUID), FREEZE(LIQUID, SOLID),
BOIL(LIQUID, GAS), CONDENSE(GAS, LIQUID),
SUBLIME(SOLID, GAS), DEPOSIT(GAS, SOLID);

final Phase src;
final Phase dst;

Transition(Phase src, Phase dst) {

this.src = src;
this.dst = dst;

}

CHAPTER 6 ENUMS AND ANNOTATIONS164

// Initialize the phase transition map
private static final Map<Phase, Map<Phase,Transition>> m =
new EnumMap<Phase, Map<Phase,Transition>>(Phase.class);

static {
for (Phase p : Phase.values())

m.put(p,new EnumMap<Phase,Transition>(Phase.class));
for (Transition trans : Transition.values())

m.get(trans.src).put(trans.dst, trans);
}

public static Transition from(Phase src, Phase dst) {
return m.get(src).get(dst);

}
}

}

The code to initialize the phase transition map may look a bit complicated but
it isn’t too bad. The type of the map is Map<Phase, Map<Phase, Transition>>,
which means “map from (source) phase to map from (destination) phase to transi-
tion.” The first loop in the static initializer block initializes the outer map to con-
tain the three empty inner maps. The second loop in the block initializes the inner
maps using the source and destination information provided by each state transi-
tion constant.

Now suppose you want to add a new phase to the system: the plasma, or ion-
ized gas. There are only two transitions associated with this phase: ionization,
which takes a gas to a plasma; and deionization, which takes a plasma to a gas. To
update the array-based program, you would have to add one new constant to
Phase and two to Phase.Transition, and replace the original nine-element array
of arrays with a new sixteen-element version. If you add too many or too few ele-
ments to the array, or place an element out of order, you are out of luck: the pro-
gram will compile, but it will fail at runtime. To update the EnumMap-based
version, all you have to do is add PLASMA to the list of phases, and IONIZE(GAS,
PLASMA) and DEIONIZE(PLASMA, GAS) to the list of phase transitions. The pro-
gram takes care of everything else, and you have virtually no opportunity for error.
Internally, the map of maps is implemented as an array of arrays, so you pay little
in space or time cost for the added clarity, safety, and ease of maintenance.

In summary, it is rarely appropriate to use ordinals to index arrays: use
EnumMap instead. If the relationship that you are representing is multidimensional,
use EnumMap<..., EnumMap<...>>. This is a special case of the general principle
that application programmers should rarely, if ever, use Enum.ordinal (Item 31).

ITEM 34: EMULATE EXTENSIBLE ENUMS WITH INTERFACES 165

Item 34: Emulate extensible enums with interfaces

In almost all respects, enum types are superior to the typesafe enum pattern
described in the first edition of this book [Bloch01]. On the face of it, one excep-
tion concerns extensibility, which was possible under the original pattern but is
not supported by the language construct. In other words, using the pattern, it was
possible to have one enumerated type extend another; using the language feature,
it is not. This is no accident. For the most part, extensibility of enums turns out to
be a bad idea. It is confusing that elements of an extension type are instances of
the base type and not vice versa. There is no good way to enumerate over all of the
elements of a base type and its extension. Finally, extensibility would complicate
many aspects of the design and implementation.

That said, there is at least one compelling use case for extensible enumerated
types, which is operation codes, also known as opcodes. An opcode is an enumer-
ated type whose elements represent operations on some machine, such as the
Operation type in Item 30, which represents the functions on a simple calculator.
Sometimes it is desirable to let the users of an API provide their own operations,
effectively extending the set of operations provided by the API.

Luckily, there is a nice way to achieve this effect using enum types. The basic
idea is to take advantage of the fact that enum types can implement arbitrary inter-
faces by defining an interface for the opcode type and an enum that is the standard
implementation of the interface. For example, here is an extensible version of
Operation type from Item 30:

// Emulated extensible enum using an interface
public interface Operation {

double apply(double x, double y);
}

public enum BasicOperation implements Operation {
PLUS("+") {

public double apply(double x, double y) { return x + y; }
},
MINUS("-") {

public double apply(double x, double y) { return x - y; }
},
TIMES("*") {

public double apply(double x, double y) { return x * y; }
},
DIVIDE("/") {

public double apply(double x, double y) { return x / y; }
};

CHAPTER 6 ENUMS AND ANNOTATIONS166

private final String symbol;
BasicOperation(String symbol) {

this.symbol = symbol;
}
@Override public String toString() {

return symbol;
}

}

While the enum type (BasicOperation) is not extensible, the interface type
(Operation) is, and it is the interface type that is used to represent operations in
APIs. You can define another enum type that implements this interface and use
instances of this new type in place of the base type. For example, suppose you
want to define an extension to the operation type above, consisting of the expo-
nentiation and remainder operations. All you have to do is write an enum type that
implements the Operation interface:

// Emulated extension enum
public enum ExtendedOperation implements Operation {
 EXP("^") {
 public double apply(double x, double y) {
 return Math.pow(x, y);
 }
 },
 REMAINDER("%") {
 public double apply(double x, double y) {
 return x % y;
 }
 };

 private final String symbol;
 ExtendedOperation(String symbol) {
 this.symbol = symbol;
 }
 @Override public String toString() {
 return symbol;
 }
}

You can use your new operations anywhere you could use the basic opera-
tions, provided that APIs are written to take the interface type (Operation), not
the implementation (BasicOperation). Note that you don’t have to declare the
abstract apply method in the enum as you do in a nonextensible enum with
instance-specific method implementations (page 152). This is because the abstract
method (apply) is a member of the interface (Operation).

ITEM 34: EMULATE EXTENSIBLE ENUMS WITH INTERFACES 167

Not only is it possible to pass a single instance of an “extension enum” any-
where a “base enum” is expected; it is possible to pass in an entire extension enum
type and use its elements in addition to or instead of those of the base type. For
example, here is a version of the test program on page 153 that exercises all of the
extended operations defined above:

public static void main(String[] args) {
double x = Double.parseDouble(args[0]);
double y = Double.parseDouble(args[1]);
test(ExtendedOperation.class, x, y);

}
private static <T extends Enum<T> & Operation> void test(

Class<T> opSet, double x, double y) {
for (Operation op : opSet.getEnumConstants())

System.out.printf("%f %s %f = %f%n",
x, op, y, op.apply(x, y));

}

Note that the class literal for the extended operation type (ExtendedOpera-
tion.class) is passed from main to test to describe the set of extended opera-
tions. The class literal serves as a bounded type token (Item 29). The admittedly
complex declaration for the opSet parameter ((<T extends Enum<T> & Opera-

tion> Class<T>) ensures that the Class object represents both an enum and a
subtype of Operation, which is exactly what is required to iterate over the ele-
ments and perform the operation associated with each one.

A second alternative is to use Collection<? extends Operation>, which is a
bounded wildcard type (Item 28), as the type for the opSet parameter:

public static void main(String[] args) {
double x = Double.parseDouble(args[0]);
double y = Double.parseDouble(args[1]);
test(Arrays.asList(ExtendedOperation.values()), x, y);

}

private static void test(Collection<? extends Operation> opSet,
double x, double y) {

for (Operation op : opSet)
System.out.printf("%f %s %f = %f%n",

x, op, y, op.apply(x, y));
}

The resulting code is a bit less complex, and the test method is a bit more flexi-
ble: it allows the caller to combine operations from multiple implementation

CHAPTER 6 ENUMS AND ANNOTATIONS168

types. On the other hand, you forgo the ability to use EnumSet (Item 32) and
EnumMap (Item 33) on the specified operations, so you are probably better off with
the bounded type token unless you need the flexibility to combine operations of
multiple implementation types.

Both programs above will produce this output when run with command line
arguments 2 and 4:

4.000000 ^ 2.000000 = 16.000000
4.000000 % 2.000000 = 0.000000

A minor disadvantage of the use of interfaces to emulate extensible enums is
that implementations cannot be inherited from one enum type to another. In the
case of our Operation example, the logic to store and retrieve the symbol associ-
ated with an operation is duplicated in BasicOperation and ExtendedOperation.
In this case it doesn’t matter because very little code is duplicated. If there were a
larger amount of shared functionality, you could encapsulate it in a helper class or
a static helper method to eliminate the code duplication.

In summary, while you cannot write an extensible enum type, you can
emulate it by writing an interface to go with a basic enum type that imple-
ments the interface. This allows clients to write their own enums that implement
the interface. These enums can then be used wherever the basic enum type can be
used, assuming APIs are written in terms of the interface.

ITEM 35: PREFER ANNOTATIONS TO NAMING PATTERNS 169

Item 35: Prefer annotations to naming patterns

Prior to release 1.5, it was common to use naming patterns to indicate that some
program elements demanded special treatment by a tool or framework. For exam-
ple, the JUnit testing framework originally required its users to designate test
methods by beginning their names with the characters test [Beck04]. This tech-
nique works, but it has several big disadvantages. First, typographical errors may
result in silent failures. For example, suppose you accidentally name a test method
tsetSafetyOverride instead of testSafetyOverride. JUnit will not complain,
but it will not execute the test either, leading to a false sense of security.

A second disadvantage of naming patterns is that there is no way to ensure
that they are used only on appropriate program elements. For example, suppose
you call a class testSafetyMechanisms in hopes that JUnit will automatically
test all of its methods, regardless of their names. Again, JUnit won’t complain, but
it won’t execute the tests either.

A third disadvantage of naming patterns is that they provide no good way to
associate parameter values with program elements. For example, suppose you
want to support a category of test that succeeds only if it throws a particular
exception. The exception type is essentially a parameter of the test. You could
encode the exception type name into the test method name using some elaborate
naming pattern, but this would be ugly and fragile (Item 50). The compiler would
have no way of knowing to check that the string that was supposed to name an
exception actually did. If the named class didn’t exist or wasn’t an exception, you
wouldn’t find out until you tried to run the test.

Annotations [JLS, 9.7] solve all of these problems nicely. Suppose you want
to define an annotation type to designate simple tests that are run automatically
and fail if they throw an exception. Here’s how such an annotation type, named
Test, might look:

// Marker annotation type declaration
import java.lang.annotation.*;

/**
 * Indicates that the annotated method is a test method.
 * Use only on parameterless static methods.
 */
@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)
public @interface Test {
}

CHAPTER 6 ENUMS AND ANNOTATIONS170

The declaration for the Test annotation type is itself annotated with Reten-
tion and Target annotations. Such annotations on annotation type declarations
are known as meta-annotations. The @Retention(RetentionPolicy.RUNTIME)
meta-annotation indicates that Test annotations should be retained at runtime.
Without it, Test annotations would be invisible to the test tool. The @Tar-
get(ElementType.METHOD) meta-annotation indicates that the Test annotation is
legal only on method declarations: it cannot be applied to class declarations, field
declarations, or other program elements.

Note the comment above the Test annotation declaration that says, “Use only
on parameterless static methods.” It would be nice if the compiler could enforce
this restriction, but it can’t. There are limits to how much error checking the com-
piler can do for you even with annotations. If you put a Test annotation on the
declaration of an instance method or a method with one or more parameters, the
test program will still compile, leaving it to the testing tool to deal with the prob-
lem at runtime.

Here is how the Test annotation looks in practice. It is called a marker anno-
tation, because it has no parameters but simply “marks” the annotated element. If
the programmer were to misspell Test, or to apply the Test annotation to a pro-
gram element other than a method declaration, the program wouldn’t compile:

// Program containing marker annotations
public class Sample {

@Test public static void m1() { } // Test should pass
public static void m2() { }
@Test public static void m3() { // Test Should fail

throw new RuntimeException("Boom");
}
public static void m4() { }
@Test public void m5() { } // INVALID USE: nonstatic method
public static void m6() { }
@Test public static void m7() { // Test should fail

throw new RuntimeException("Crash");
}
public static void m8() { }

}

The Sample class has eight static methods, four of which are annotated as
tests. Two of these, m3 and m7, throw exceptions and two, m1 and m5, do not. But
one of the annotated methods that does not throw an exception, m5, is an instance
method, so it is not a valid use of the annotation. In sum, Sample contains four
tests: one will pass, two will fail, and one is invalid. The four methods that are not
annotated with the Test annotation will be ignored by the testing tool.

ITEM 35: PREFER ANNOTATIONS TO NAMING PATTERNS 171

The Test annotations have no direct effect on the semantics of the Sample
class. They serve only to provide information for use by interested programs.
More generally, annotations never change the semantics of the annotated code, but
enable it for special treatment by tools such as this simple test runner:

// Program to process marker annotations
import java.lang.reflect.*;

public class RunTests {
public static void main(String[] args) throws Exception {

int tests = 0;
int passed = 0;
Class testClass = Class.forName(args[0]);
for (Method m : testClass.getDeclaredMethods()) {

if (m.isAnnotationPresent(Test.class)) {
tests++;
try {

m.invoke(null);
passed++;

} catch (InvocationTargetException wrappedExc) {
Throwable exc = wrappedExc.getCause();
System.out.println(m + " failed: " + exc);

} catch (Exception exc) {
System.out.println("INVALID @Test: " + m);

}
}

}
System.out.printf("Passed: %d, Failed: %d%n",

passed, tests - passed);
}

}

The test runner tool takes a fully qualified class name on the command line
and runs all of the class’s Test-annotated methods reflectively, by calling
Method.invoke. The isAnnotationPresent method tells the tool which methods
to run. If a test method throws an exception, the reflection facility wraps it in an
InvocationTargetException. The tool catches this exception and prints a fail-
ure report containing the original exception thrown by the test method, which is
extracted from the InvocationTargetException with the getCause method.

If an attempt to invoke a test method by reflection throws any exception other
than InvocationTargetException, it indicates an invalid use of the Test annota-
tion that was not caught at compile time. Such uses include annotation of an
instance method, of a method with one or more parameters, or of an inaccessible
method. The second catch block in the test runner catches these Test usage errors

CHAPTER 6 ENUMS AND ANNOTATIONS172

and prints an appropriate error message. Here is the output that is printed if Run-
Tests is run on Sample:

public static void Sample.m3() failed: RuntimeException: Boom
INVALID @Test: public void Sample.m5()
public static void Sample.m7() failed: RuntimeException: Crash
Passed: 1, Failed: 3

Now let’s add support for tests that succeed only if they throw a particular
exception. We’ll need a new annotation type for this:

// Annotation type with a parameter
import java.lang.annotation.*;
/**
 * Indicates that the annotated method is a test method that
 * must throw the designated exception to succeed.
 */
@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)
public @interface ExceptionTest {

Class<? extends Exception> value();
}

The type of the parameter for this annotation is Class<? extends Excep-

tion>. This wildcard type is, admittedly, a mouthful. In English, it means “the
Class object for some class that extends Exception,” and it allows the user of the
annotation to specify any exception type. This usage is an example of a bounded
type token (Item 29). Here’s how the annotation looks in practice. Note that class
literals are used as the values for the annotation parameter:

// Program containing annotations with a parameter
public class Sample2 {

@ExceptionTest(ArithmeticException.class)
public static void m1() { // Test should pass

int i = 0;
i = i / i;

}
@ExceptionTest(ArithmeticException.class)
public static void m2() { // Should fail (wrong exception)

int[] a = new int[0];
int i = a[1];

}
@ExceptionTest(ArithmeticException.class)
public static void m3() { } // Should fail (no exception)

}

ITEM 35: PREFER ANNOTATIONS TO NAMING PATTERNS 173

Now let’s modify the test runner tool to process the new annotation. Doing so
consists of adding the following code to the main method:

if (m.isAnnotationPresent(ExceptionTest.class)) {
tests++;
try {

m.invoke(null);
System.out.printf("Test %s failed: no exception%n", m);

} catch (InvocationTargetException wrappedEx) {
Throwable exc = wrappedEx.getCause();
Class<? extends Exception> excType =

m.getAnnotation(ExceptionTest.class).value();
if (excType.isInstance(exc)) {

passed++;
} else {

System.out.printf(
"Test %s failed: expected %s, got %s%n",
m, excType.getName(), exc);

}
} catch (Exception exc) {

System.out.println("INVALID @Test: " + m);
}

}

This code is similar to the code we used to process Test annotations, with one
exception: this code extracts the value of the annotation parameter and uses it to
check if the exception thrown by the test is of the right type. There are no explicit
casts, hence no danger of a ClassCastException. That the test program compiled
guarantees that its annotation parameters represent valid exception types, with one
caveat: it is possible that the annotation parameters were valid at compile time but
a class file representing a specified exception type is no longer present at runtime.
In this hopefully rare case, the test runner will throw TypeNotPresentException.

Taking our exception testing example one step further, it is possible to envi-
sion a test that passes if it throws any one of several specified exceptions. The
annotation mechanism has a facility that makes it easy to support this usage. Sup-
pose we change the parameter type of the ExceptionTest annotation to be an
array of Class objects:

// Annotation type with an array parameter
@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)
public @interface ExceptionTest {

Class<? extends Exception>[] value();
}

CHAPTER 6 ENUMS AND ANNOTATIONS174

The syntax for array parameters in annotations is flexible. It is optimized for
single-element arrays. All of the previous ExceptionTest annotations are still
valid with the new array-parameter version of ExceptionTest and result in sin-
gle-element arrays. To specify a multiple-element array, surround the elements
with curly braces and separate them with commas:

// Code containing an annotation with an array parameter
@ExceptionTest({ IndexOutOfBoundsException.class,

NullPointerException.class })
public static void doublyBad() {

List<String> list = new ArrayList<String>();

// The spec permits this method to throw either
// IndexOutOfBoundsException or NullPointerException
list.addAll(5, null);

}

It is reasonably straightforward to modify the test runner tool to process the
new version of ExceptionTest. This code replaces the original version:

if (m.isAnnotationPresent(ExceptionTest.class)) {
tests++;
try {

m.invoke(null);
System.out.printf("Test %s failed: no exception%n", m);

} catch (Throwable wrappedExc) {
Throwable exc = wrappedExc.getCause();
Class<? extends Exception>[] excTypes =

m.getAnnotation(ExceptionTest.class).value();
int oldPassed = passed;
for (Class<? extends Exception> excType : excTypes) {

if (excType.isInstance(exc)) {
passed++;
break;

}
}
if (passed == oldPassed)

System.out.printf("Test %s failed: %s %n", m, exc);
}

}

The testing framework developed in this item is just a toy, but it clearly dem-
onstrates the superiority of annotations over naming patterns. And it only
scratches the surface of what you can do with annotations. If you write a tool that
requires programmers to add information to source files, define an appropriate set

ITEM 35: PREFER ANNOTATIONS TO NAMING PATTERNS 175

of annotation types. There is simply no reason to use naming patterns now that
we have annotations.

That said, with the exception of toolsmiths, most programmers will have no
need to define annotation types. All programmers should, however, use the pre-
defined annotation types provided by the Java platform (Items 36 and Item
24). Also, consider using any annotations provided by your IDE or static analysis
tools. Such annotations can improve the quality of the diagnostic information pro-
vided by these tools. Note, however, that these annotations have yet to be stan-
dardized, so you will have some work to do if you switch tools, or if a standard
emerges.

CHAPTER 6 ENUMS AND ANNOTATIONS176

Item 36: Consistently use the Override annotation

When annotations were added to the language in release 1.5, several annotation
types were added to the libraries [JLS, 9.6.1]. For the typical programmer, the
most important of these is Override. This annotation can be used only on method
declarations, and it indicates that the annotated method declaration overrides a
declaration in a supertype. If you consistently use this annotation, it will protect
you from a large class of nefarious bugs. Consider this program, in which the class
Bigram represents a bigram, or ordered pair of letters:

// Can you spot the bug?
public class Bigram {

private final char first;
private final char second;
public Bigram(char first, char second) {

this.first = first;
this.second = second;

}
public boolean equals(Bigram b) {

return b.first == first && b.second == second;
}
public int hashCode() {

return 31 * first + second;
}

public static void main(String[] args) {
Set<Bigram> s = new HashSet<Bigram>();
for (int i = 0; i < 10; i++)

for (char ch = 'a'; ch <= 'z'; ch++)
s.add(new Bigram(ch, ch));

System.out.println(s.size());
}

}

The main program repeatedly adds twenty-six bigrams, each consisting of two
identical lowercase letters, to a set. Then it prints the size of the set. You might
expect the program to print 26, as sets cannot contain duplicates. If you try run-
ning the program, you’ll find that it prints not 26 but 260. What is wrong with it?

Clearly, the author of the Bigram class intended to override the equals
method (Item 8) and even remembered to override hashCode in tandem (Item 9).
Unfortunately, our hapless programmer failed to override equals, overloading it
instead (Item 41). To override Object.equals, you must define an equals
method whose parameter is of type Object, but the parameter of Bigram’s equals

ITEM 36: CONSISTENTLY USE THE OVERRIDE ANNOTATION 177

method is not of type Object, so Bigram inherits the equals method from
Object. This equals method tests for object identity, just like the == operator.
Each of the ten copies of each bigram is distinct from the other nine, so they are
deemed unequal by Object.equals, which explains why the program prints 260.

Luckily, the compiler can help you find this error, but only if you help the
compiler by telling it that you intend to override Object.equals. To do this,
annotate Bigram.equals with @Override, as shown below:

@Override public boolean equals(Bigram b) {
return b.first == first && b.second == second;

}

If you insert this annotation and try to recompile the program, the compiler
will generate an error message like this:

Bigram.java:10: method does not override or implement a method
from a supertype

@Override public boolean equals(Bigram b) {
^

You will immediately realize what you did wrong, slap yourself on the forehead,
and replace the broken equals implementation with a correct one (Item 8):

@Override public boolean equals(Object o) {
if (!(o instanceof Bigram))

return false;
Bigram b = (Bigram) o;
return b.first == first && b.second == second;

}

Therefore, you should use the Override annotation on every method decla-
ration that you believe to override a superclass declaration. There is one minor
exception to this rule. If you are writing a class that is not labeled abstract, and
you believe that it overrides an abstract method, you needn’t bother putting the
Override annotation on that method. In a class that is not declared abstract, the
compiler will emit an error message if you fail to override an abstract superclass
method. However, you might wish to draw attention to all of the methods in your
class that override superclass methods, in which case you should feel free to anno-
tate these methods too.

Modern IDEs provide another reason to use the Override annotation consis-
tently. Such IDEs have automated checks known as code inspections. If you

CHAPTER 6 ENUMS AND ANNOTATIONS178

enable the appropriate code inspection, the IDE will generate a warning if you
have a method that doesn’t have an Override annotation but does override a
superclass method. If you use the Override annotation consistently, these warn-
ings will alert you to unintentional overriding. These warnings complement the
compiler’s error messages, which alert you to unintentional failure to override.
Between the IDE and the compiler, you can be sure that you’re overriding meth-
ods everywhere you want to override them and nowhere else.

If you are using release 1.6 or a later release, the Override annotation pro-
vides even more help in finding bugs. In release 1.6, it became legal to use the
Override annotation on method declarations that override declarations from inter-
faces as well as classes. In a concrete class that is declared to implement an inter-
face, you needn’t annotate methods that you believe to override interface methods,
because the compiler will emit an error message if your class fails to implement
every interface method. Again, you may choose to include these annotations sim-
ply to draw attention to interface methods, but it isn’t strictly necessary.

In an abstract class or an interface, however, it is worth annotating all methods
that you believe to override superclass or superinterface methods, whether con-
crete or abstract. For example, the Set interface adds no new methods to the Col-
lection interface, so it should include Override annotations on all of its method
declarations, to ensure that it does not accidentally add any new methods to the
Collection interface.

In summary, the compiler can protect you from a great many errors if you use
the Override annotation on every method declaration that you believe to override
a supertype declaration, with one exception. In concrete classes, you need not
annotate methods that you believe to override abstract method declarations
(though it is not harmful to do so).

ITEM 37: USE MARKER INTERFACES TO DEFINE TYPES 179

Item 37: Use marker interfaces to define types

A marker interface is an interface that contains no method declarations, but
merely designates (or “marks”) a class that implements the interface as having
some property. For example, consider the Serializable interface (Chapter 11).
By implementing this interface, a class indicates that its instances can be written
to an ObjectOutputStream (or “serialized”).

You may hear it said that marker annotations (Item 35) make marker inter-
faces obsolete. This assertion is incorrect. Marker interfaces have two advantages
over marker annotations. First and foremost, marker interfaces define a type
that is implemented by instances of the marked class; marker annotations do
not. The existence of this type allows you to catch errors at compile time that you
couldn’t catch until runtime if you used a marker annotation.

In the case of the Serializable marker interface, the ObjectOutput-
Stream.write(Object) method will fail if its argument does not implement the
interface. Inexplicably, the authors of the ObjectOutputStream API did not take
advantage of the Serializable interface in declaring the write method. The
method’s argument type should have been Serializable rather than Object. As
it stands, an attempt to call ObjectOutputStream.write on an object that doesn’t
implement Serializable will fail only at runtime, but it didn’t have to be that
way.

Another advantage of marker interfaces over marker annotations is that they
can be targeted more precisely. If an annotation type is declared with target Ele-
mentType.TYPE, it can be applied to any class or interface. Suppose you have a
marker that is applicable only to implementations of a particular interface. If you
define it as a marker interface, you can have it extend the sole interface to which it
is applicable, guaranteeing that all marked types are also subtypes of the sole
interface to which it is applicable.

Arguably, the Set interface is just such a restricted marker interface. It is
applicable only to Collection subtypes, but it adds no methods beyond those
defined by Collection. It is not generally considered to be a marker interface
because it refines the contracts of several Collection methods, including add,
equals, and hashCode. But it is easy to imagine a marker interface that is applica-
ble only to subtypes of some particular interface and does not refine the contracts
of any of the interface’s methods as such. Such a marker interface might describe
some invariant of the entire object or indicate that instances are eligible for pro-
cessing by a method of some other class (in the way that the Serializable inter-
face indicates that instances are eligible for processing by ObjectOutputStream).

CHAPTER 6 ENUMS AND ANNOTATIONS180

The chief advantage of marker annotations over marker interfaces is that it is
possible to add more information to an annotation type after it is already in use, by
adding one or more annotation type elements with defaults [JLS, 9.6]. What starts
life as a mere marker annotation type can evolve into a richer annotation type over
time. Such evolution is not possible with marker interfaces, as it is not generally
possible to add methods to an interface after it has been implemented (Item 18).

Another advantage of marker annotations is that they are part of the larger
annotation facility. Therefore, marker annotations allow for consistency in frame-
works that permit annotation of a variety of program elements.

So when should you use a marker annotation and when should you use a
marker interface? Clearly you must use an annotation if the marker applies to any
program element other than a class or interface, as only classes and interfaces can
be made to implement or extend an interface. If the marker applies only to classes
and interfaces, ask yourself the question, Might I want to write one or more meth-
ods that accept only objects that have this marking? If so, you should use a marker
interface in preference to an annotation. This will make it possible for you to use
the interface as a parameter type for the methods in question, which will result in
the very real benefit of compile-time type checking.

If you answered no to the first question, ask yourself one more: Do I want to
limit the use of this marker to elements of a particular interface, forever? If so, it
makes sense to define the marker as a subinterface of that interface. If you
answered no to both questions, you should probably use a marker annotation.

In summary, marker interfaces and marker annotations both have their uses. If
you want to define a type that does not have any new methods associated with it, a
marker interface is the way to go. If you want to mark program elements other
than classes and interfaces, to allow for the possibility of adding more information
to the marker in the future, or to fit the marker into a framework that already
makes heavy use of annotation types, then a marker annotation is the correct
choice. If you find yourself writing a marker annotation type whose target is
ElementType.TYPE, take the time to figure out whether it really should be an
annotation type, or whether a marker interface would be more appropriate.

In a sense, this item is the inverse of Item 19, which says, “If you don’t want
to define a type, don’t use an interface.” To a first approximation, this item says,
“If you do want to define a type, do use an interface.”

181

C H A P T E R 7
Methods

THIS chapter discusses several aspects of method design: how to treat
parameters and return values, how to design method signatures, and how to
document methods. Much of the material in this chapter applies to constructors as
well as to methods. Like Chapter 5, this chapter focuses on usability, robustness,
and flexibility.

Item 38: Check parameters for validity

Most methods and constructors have some restrictions on what values may be
passed into their parameters. For example, it is not uncommon that index values
must be non-negative and object references must be non-null. You should clearly
document all such restrictions and enforce them with checks at the beginning of
the method body. This is a special case of the general principle that you should
attempt to detect errors as soon as possible after they occur. Failing to do so makes
it less likely that an error will be detected and makes it harder to determine the
source of an error once it has been detected.

If an invalid parameter value is passed to a method and the method checks its
parameters before execution, it will fail quickly and cleanly with an appropriate
exception. If the method fails to check its parameters, several things could happen.
The method could fail with a confusing exception in the midst of processing.
Worse, the method could return normally but silently compute the wrong result.
Worst of all, the method could return normally but leave some object in a compro-
mised state, causing an error at some unrelated point in the code at some undeter-
mined time in the future.

For public methods, use the Javadoc @throws tag to document the exception
that will be thrown if a restriction on parameter values is violated (Item 62). Typi-
cally the exception will be IllegalArgumentException, IndexOutOfBounds-

CHAPTER 7 METHODS182

Exception, or NullPointerException (Item 60). Once you’ve documented the
restrictions on a method’s parameters and you’ve documented the exceptions that
will be thrown if these restrictions are violated, it is a simple matter to enforce the
restrictions. Here’s a typical example:

/**
* Returns a BigInteger whose value is (this mod m). This method
* differs from the remainder method in that it always returns a
* non-negative BigInteger.
*
* @param m the modulus, which must be positive
* @return this mod m
* @throws ArithmeticException if m is less than or equal to 0
*/
public BigInteger mod(BigInteger m) {

if (m.signum() <= 0)
throw new ArithmeticException("Modulus <= 0: " + m);

... // Do the computation
}

For an unexported method, you as the package author control the circum-
stances under which the method is called, so you can and should ensure that only
valid parameter values are ever passed in. Therefore, nonpublic methods should
generally check their parameters using assertions, as shown below:

// Private helper function for a recursive sort
private static void sort(long a[], int offset, int length) {

assert a != null;
assert offset >= 0 && offset <= a.length;
assert length >= 0 && length <= a.length - offset;
... // Do the computation

}

In essence, these assertions are claims that the asserted condition will be true,
regardless of how the enclosing package is used by its clients. Unlike normal
validity checks, assertions throw AssertionError if they fail. And unlike normal
validity checks, they have no effect and essentially no cost unless you enable
them, which you do by passing the -ea (or -enableassertions) flag to the java
interpreter. For more information on assertions, see Sun’s tutorial [Asserts].

It is particularly important to check the validity of parameters that are not
used by a method but are stored away for later use. For example, consider the
static factory method on page 95, which takes an int array and returns a List
view of the array. If a client of this method were to pass in null, the method

ITEM 38: CHECK PARAMETERS FOR VALIDITY 183

would throw a NullPointerException because the method contains an explicit
check. Had the check been omitted, the method would return a reference to a
newly created List instance that would throw a NullPointerException as soon
as a client attempted to use it. By that time, the origin of the List instance might
be difficult to determine, which could greatly complicate the task of debugging.

Constructors represent a special case of the principle that you should check
the validity of parameters that are to be stored away for later use. It is critical to
check the validity of constructor parameters to prevent the construction of an
object that violates its class invariants.

There are exceptions to the rule that you should check a method’s parameters
before performing its computation. An important exception is the case in which
the validity check would be expensive or impractical and the validity check is per-
formed implicitly in the process of doing the computation. For example, consider
a method that sorts a list of objects, such as Collections.sort(List). All of the
objects in the list must be mutually comparable. In the process of sorting the list,
every object in the list will be compared to some other object in the list. If the
objects aren’t mutually comparable, one of these comparisons will throw a Class-
CastException, which is exactly what the sort method should do. Therefore,
there would be little point in checking ahead of time that the elements in the list
were mutually comparable. Note, however, that indiscriminate reliance on implicit
validity checks can result in a loss of failure atomicity (Item 64).

Occasionally, a computation implicitly performs a required validity check but
throws the wrong exception if the check fails. In other words, the exception that
the computation would naturally throw as the result of an invalid parameter value
doesn’t match the exception that the method is documented to throw. Under these
circumstances, you should use the exception translation idiom, described in Item
61, to translate the natural exception into the correct one.

Do not infer from this item that arbitrary restrictions on parameters are a good
thing. On the contrary, you should design methods to be as general as it is practi-
cal to make them. The fewer restrictions that you place on parameters, the better,
assuming the method can do something reasonable with all of the parameter val-
ues that it accepts. Often, however, some restrictions are intrinsic to the abstrac-
tion being implemented.

To summarize, each time you write a method or constructor, you should think
about what restrictions exist on its parameters. You should document these restric-
tions and enforce them with explicit checks at the beginning of the method body.
It is important to get into the habit of doing this. The modest work that it entails
will be paid back with interest the first time a validity check fails.

CHAPTER 7 METHODS184

Item 39: Make defensive copies when needed

One thing that makes Java such a pleasure to use is that it is a safe language. This
means that in the absence of native methods it is immune to buffer overruns, array
overruns, wild pointers, and other memory corruption errors that plague unsafe
languages such as C and C++. In a safe language, it is possible to write classes and
to know with certainty that their invariants will remain true, no matter what
happens in any other part of the system. This is not possible in languages that treat
all of memory as one giant array.

Even in a safe language, you aren’t insulated from other classes without some
effort on your part. You must program defensively, with the assumption that
clients of your class will do their best to destroy its invariants. This may actu-
ally be true if someone tries to break the security of your system, but more likely
your class will have to cope with unexpected behavior resulting from honest mis-
takes on the part of programmers using your API. Either way, it is worth taking
the time to write classes that are robust in the face of ill-behaved clients.

While it is impossible for another class to modify an object’s internal state
without some assistance from the object, it is surprisingly easy to provide such
assistance without meaning to do so. For example, consider the following class,
which purports to represent an immutable time period:

// Broken "immutable" time period class
public final class Period {

private final Date start;
private final Date end;

/**
* @param start the beginning of the period
* @param end the end of the period; must not precede start
* @throws IllegalArgumentException if start is after end
* @throws NullPointerException if start or end is null
*/
public Period(Date start, Date end) {

if (start.compareTo(end) > 0)
throw new IllegalArgumentException(

start + " after " + end);
this.start = start;
this.end = end;

}

public Date start() {
return start;

}

ITEM 39: MAKE DEFENSIVE COPIES WHEN NEEDED 185

public Date end() {
return end;

}

... // Remainder omitted
}

At first glance, this class may appear to be immutable and to enforce the
invariant that the start of a period does not follow its end. It is, however, easy to
violate this invariant by exploiting the fact that Date is mutable:

// Attack the internals of a Period instance
Date start = new Date();
Date end = new Date();
Period p = new Period(start, end);
end.setYear(78); // Modifies internals of p!

To protect the internals of a Period instance from this sort of attack, it is
essential to make a defensive copy of each mutable parameter to the construc-
tor and to use the copies as components of the Period instance in place of the
originals:

// Repaired constructor - makes defensive copies of parameters
public Period(Date start, Date end) {

this.start = new Date(start.getTime());
this.end = new Date(end.getTime());

if (this.start.compareTo(this.end) > 0)
throw new IllegalArgumentException(start +" after "+ end);

}

With the new constructor in place, the previous attack will have no effect on
the Period instance. Note that defensive copies are made before checking the
validity of the parameters (Item 38), and the validity check is performed on
the copies rather than on the originals. While this may seem unnatural, it is nec-
essary. It protects the class against changes to the parameters from another thread
during the “window of vulnerability” between the time the parameters are checked
and the time they are copied. (In the computer security community, this is known
as a time-of-check/time-of-use or TOCTOU attack [Viega01].)

Note also that we did not use Date’s clone method to make the defensive cop-
ies. Because Date is nonfinal, the clone method is not guaranteed to return an
object whose class is java.util.Date: it could return an instance of an untrusted

CHAPTER 7 METHODS186

subclass specifically designed for malicious mischief. Such a subclass could, for
example, record a reference to each instance in a private static list at the time of its
creation and allow the attacker to access this list. This would give the attacker free
reign over all instances. To prevent this sort of attack, do not use the clone
method to make a defensive copy of a parameter whose type is subclassable
by untrusted parties.

While the replacement constructor above successfully defends against the pre-
vious attack, it is still possible to mutate a Period instance, because its accessors
offer access to its mutable internals:

// Second attack on the internals of a Period instance
Date start = new Date();
Date end = new Date();
Period p = new Period(start, end);
p.end().setYear(78); // Modifies internals of p!

To defend against the second attack, merely modify the accessors to return
defensive copies of mutable internal fields:

// Repaired accessors - make defensive copies of internal fields
public Date start() {

return new Date(start.getTime());
}

public Date end() {
return new Date(end.getTime());

}

With the new constructor and the new accessors in place, Period is truly
immutable. No matter how malicious or incompetent a programmer, there is sim-
ply no way to violate the invariant that the start of a period does not follow its end.
This is true because there is no way for any class other than Period itself to gain
access to either of the mutable fields in a Period instance. These fields are truly
encapsulated within the object.

In the accessors, unlike the constructor, it would be permissible to use the
clone method to make the defensive copies. This is so because we know that the
class of Period’s internal Date objects is java.util.Date, and not some poten-
tially untrusted subclass. That said, you are generally better off using a constructor
or static factory, for reasons outlined in Item 11.

Defensive copying of parameters is not just for immutable classes. Anytime
you write a method or constructor that enters a client-provided object into an

ITEM 39: MAKE DEFENSIVE COPIES WHEN NEEDED 187

internal data structure, think about whether the client-provided object is poten-
tially mutable. If it is, think about whether your class could tolerate a change in
the object after it was entered into the data structure. If the answer is no, you must
defensively copy the object and enter the copy into the data structure in place of
the original. For example, if you are considering using a client-provided object
reference as an element in an internal Set instance or as a key in an internal Map
instance, you should be aware that the invariants of the set or map would be
destroyed if the object were modified after it is inserted.

The same is true for defensive copying of internal components prior to return-
ing them to clients. Whether or not your class is immutable, you should think
twice before returning a reference to an internal component that is mutable.
Chances are, you should return a defensive copy. Remember that nonzero-length
arrays are always mutable. Therefore, you should always make a defensive copy
of an internal array before returning it to a client. Alternatively, you could return
an immutable view of the array. Both of these techniques are shown in Item 13.

Arguably, the real lesson in all of this is that you should, where possible, use
immutable objects as components of your objects, so that you that don’t have to
worry about defensive copying (Item 15). In the case of our Period example, it is
worth pointing out that experienced programmers often use the primitive long
returned by Date.getTime() as an internal time representation instead of using a
Date reference. They do this primarily because Date is mutable.

Defensive copying can have a performance penalty associated with it and isn’t
always justified. If a class trusts its caller not to modify an internal component,
perhaps because the class and its client are both part of the same package, then it
may be appropriate to dispense with defensive copying. Under these circum-
stances, the class documentation must make it clear that the caller must not mod-
ify the affected parameters or return values.

Even across package boundaries, it is not always appropriate to make a defen-
sive copy of a mutable parameter before integrating it into an object. There are
some methods and constructors whose invocation indicates an explicit handoff of
the object referenced by a parameter. When invoking such a method, the client
promises that it will no longer modify the object directly. A method or constructor
that expects to take ownership of a client-provided mutable object must make this
clear in its documentation.

Classes containing methods or constructors whose invocation indicates a
transfer of control cannot defend themselves against malicious clients. Such
classes are acceptable only when there is mutual trust between the class and its cli-
ent or when damage to the class’s invariants would harm no one but the client. An

CHAPTER 7 METHODS188

example of the latter situation is the wrapper class pattern (Item 16). Depending
on the nature of the wrapper class, the client could destroy the class’s invariants by
directly accessing an object after it has been wrapped, but this typically would
harm only the client.

In summary, if a class has mutable components that it gets from or returns to
its clients, the class must defensively copy these components. If the cost of the
copy would be prohibitive and the class trusts its clients not to modify the compo-
nents inappropriately, then the defensive copy may be replaced by documentation
outlining the client’s responsibility not to modify the affected components.

ITEM 40: DESIGN METHOD SIGNATURES CAREFULLY 189

Item 40: Design method signatures carefully

This item is a grab bag of API design hints that don’t quite deserve items of their
own. Taken together, they’ll help make your API easier to learn and use and less
prone to errors.

Choose method names carefully. Names should always obey the standard
naming conventions (Item 56). Your primary goal should be to choose names that
are understandable and consistent with other names in the same package. Your
secondary goal should be to choose names consistent with the broader consensus,
where it exists. When in doubt, look to the Java library APIs for guidance. While
there are plenty of inconsistencies—inevitable, given the size and scope of these
libraries—there is also a fair amount of consensus.

Don’t go overboard in providing convenience methods. Every method
should “pull its weight.” Too many methods make a class difficult to learn, use,
document, test, and maintain. This is doubly true for interfaces, where too many
methods complicate life for implementors as well as users. For each action sup-
ported by your class or interface, provide a fully functional method. Consider pro-
viding a “shorthand” only if it will be used often. When in doubt, leave it out.

Avoid long parameter lists. Aim for four parameters or fewer. Most pro-
grammers can’t remember longer parameter lists. If many of your methods exceed
this limit, your API won’t be usable without constant reference to its documenta-
tion. Modern IDEs help, but you’re still much better off with short parameter lists.
Long sequences of identically typed parameters are especially harmful. Not
only won’t users be able to remember the order of the parameters, but when they
transpose parameters accidentally, their programs will still compile and run. They
just won’t do what their authors intended.

There are three techniques for shortening overly long parameter lists. One is
to break the method up into multiple methods, each of which requires only a sub-
set of the parameters. If done carelessly, this can lead to too many methods, but it
can also help reduce the method count by increasing orthogonality. For example,
consider the java.util.List interface. It does not provide methods to find the
first or last index of an element in a sublist, both of which would require three
parameters. Instead it provides the subList method, which takes two parameters
and returns a view of a sublist. This method can be combined with the indexOf or
lastIndexOf methods, each of which has a single parameter, to yield the desired
functionality. Moreover, the subList method can be combined with any method
that operates on a List instance to perform arbitrary computations on sublists.
The resulting API has a very high power-to-weight ratio.

CHAPTER 7 METHODS190

A second technique for shortening long parameter lists is to create helper
classes to hold groups of parameters. Typically these helper classes are static
member classes (Item 22). This technique is recommended if a frequently occur-
ring sequence of parameters is seen to represent some distinct entity. For example,
suppose you are writing a class representing a card game, and you find yourself
constantly passing a sequence of two parameters representing a card’s rank and its
suit. Your API, as well as the internals of your class, would probably benefit if you
added a helper class to represent a card and replaced every occurrence of the
parameter sequence with a single parameter of the helper class.

A third technique that combines aspects of the first two is to adapt the Builder
pattern (Item 2) from object construction to method invocation. If you have a
method with many parameters, especially if some of them are optional, it can be
beneficial to define an object that represents all of the parameters, and to allow the
client to make multiple “setter” calls on this object, each of which sets a single
parameter or a small, related group. Once the desired parameters have been set,
the client invokes the object’s “execute” method, which does any final validity
checks on the parameters and performs the actual computation.

For parameter types, favor interfaces over classes (Item 52). If there is an
appropriate interface to define a parameter, use it in favor of a class that imple-
ments the interface. For example, there is no reason ever to write a method that
takes HashMap on input—use Map instead. This lets you pass in a Hashtable, a
HashMap, a TreeMap, a submap of a TreeMap, or any Map implementation yet to be
written. By using a class instead of an interface, you restrict your client to a partic-
ular implementation and force an unnecessary and potentially expensive copy
operation if the input data happens to exist in some other form.

Prefer two-element enum types to boolean parameters. It makes your code
easier to read and to write, especially if you’re using an IDE that supports autocom-
pletion. Also, it makes it easy to add more options later. For example, you might
have a Thermometer type with a static factory that takes a value of this enum:

public enum TemperatureScale { FAHRENHEIT, CELSIUS }

Not only does Thermometer.newInstance(TemperatureScale.CELSIUS)
make a lot more sense than Thermometer.newInstance(true), but you can add
KELVIN to TemperatureScale in a future release without having to add a new
static factory to Thermometer. Also, you can refactor temperature-scale dependen-
cies into methods on the enum constants (Item 30). For example, each scale con-
stant could have a method that took a double value and normalized it to Celsius.

ITEM 41: USE OVERLOADING JUDICIOUSLY 191

Item 41: Use overloading judiciously

The following program is a well-intentioned attempt to classify collections
according to whether they are sets, lists, or some other kind of collection:

// Broken! - What does this program print?
public class CollectionClassifier {

public static String classify(Set<?> s) {
return "Set";

}

public static String classify(List<?> lst) {
return "List";

}

public static String classify(Collection<?> c) {
return "Unknown Collection";

}

public static void main(String[] args) {
Collection<?>[] collections = {

new HashSet<String>(),
new ArrayList<BigInteger>(),
new HashMap<String, String>().values()

};

for (Collection<?> c : collections)
System.out.println(classify(c));

 }
}

You might expect this program to print Set, followed by List and Unknown
Collection, but it doesn’t. It prints Unknown Collection three times. Why does
this happen? Because the classify method is overloaded, and the choice of
which overloading to invoke is made at compile time. For all three iterations of
the loop, the compile-time type of the parameter is the same: Collection<?>. The
runtime type is different in each iteration, but this does not affect the choice of
overloading. Because the compile-time type of the parameter is Collection<?>,
the only applicable overloading is the third one, classify(Collection<?>), and
this overloading is invoked in each iteration of the loop.

The behavior of this program is counterintuitive because selection among
overloaded methods is static, while selection among overridden methods is
dynamic. The correct version of an overridden method is chosen at runtime,

CHAPTER 7 METHODS192

based on the runtime type of the object on which the method is invoked. As a
reminder, a method is overridden when a subclass contains a method declaration
with the same signature as a method declaration in an ancestor. If an instance
method is overridden in a subclass and this method is invoked on an instance of
the subclass, the subclass’s overriding method executes, regardless of the compile-
time type of the subclass instance. To make this concrete, consider the following
program:

class Wine {
String name() { return "wine"; }

}

class SparklingWine extends Wine {
@Override String name() { return "sparkling wine"; }

}

class Champagne extends SparklingWine {
@Override String name() { return "champagne"; }

}

public class Overriding {
public static void main(String[] args) {

Wine[] wines = {
new Wine(), new SparklingWine(), new Champagne()

};
for (Wine wine : wines)

System.out.println(wine.name());
}

}

The name method is declared in class Wine and overridden in classes Spar-
klingWine and Champagne. As you would expect, this program prints out wine,
sparkling wine, and champagne, even though the compile-time type of the
instance is Wine in each iteration of the loop. The compile-time type of an object
has no effect on which method is executed when an overridden method is invoked;
the “most specific” overriding method always gets executed. Compare this to
overloading, where the runtime type of an object has no effect on which overload-
ing is executed; the selection is made at compile time, based entirely on the com-
pile-time types of the parameters.

In the CollectionClassifier example, the intent of the program was to dis-
cern the type of the parameter by dispatching automatically to the appropriate
method overloading based on the runtime type of the parameter, just as the name
method did in the Wine example. Method overloading simply does not provide this

ITEM 41: USE OVERLOADING JUDICIOUSLY 193

functionality. Assuming a static method is required, the best way to fix the pro-
gram is to replace all three overloadings of classify with a single method that
does an explicit instanceof test:

public static String classify(Collection<?> c) {
return c instanceof Set ? "Set" :

c instanceof List ? "List" : "Unknown Collection";
}

Because overriding is the norm and overloading is the exception, overriding
sets people’s expectations for the behavior of method invocation. As demonstrated
by the CollectionClassifier example, overloading can easily confound these
expectations. It is bad practice to write code whose behavior is likely to confuse
programmers. This is especially true for APIs. If the typical user of an API does
not know which of several method overloadings will get invoked for a given set of
parameters, use of the API is likely to result in errors. These errors will likely
manifest themselves as erratic behavior at runtime, and many programmers will
be unable to diagnose them. Therefore you should avoid confusing uses of over-
loading.

Exactly what constitutes a confusing use of overloading is open to some
debate. A safe, conservative policy is never to export two overloadings with
the same number of parameters. If a method uses varargs, a conservative policy
is not to overload it at all, except as described in Item 42. If you adhere to these
restrictions, programmers will never be in doubt as to which overloading applies
to any set of actual parameters. The restrictions are not terribly onerous because
you can always give methods different names instead of overloading them.

For example, consider the class ObjectOutputStream. It has a variant of its
write method for every primitive type and for several reference types. Rather than
overloading the write method, these variants have signatures like writeBool-
ean(boolean), writeInt(int), and writeLong(long). An added benefit of this
naming pattern, when compared to overloading, is that it is possible to provide
read methods with corresponding names, for example, readBoolean(), read-

Int(), and readLong(). The ObjectInputStream class does, in fact, provide
such read methods.

For constructors, you don’t have the option of using different names: multiple
constructors for a class are always overloaded. You do, in many cases, have the
option of exporting static factories instead of constructors (Item 1). Also, with
constructors you don’t have to worry about interactions between overloading and
overriding, because constructors can’t be overridden. You will probably have

CHAPTER 7 METHODS194

occasion to export multiple constructors with the same number of parameters, so
it pays to know how to do it safely.

Exporting multiple overloadings with the same number of parameters is
unlikely to confuse programmers if it is always clear which overloading will apply
to any given set of actual parameters. This is the case when at least one corre-
sponding formal parameter in each pair of overloadings has a “radically different”
type in the two overloadings. Two types are radically different if it is clearly
impossible to cast an instance of either type to the other. Under these circum-
stances, which overloading applies to a given set of actual parameters is fully
determined by the runtime types of the parameters and cannot be affected by their
compile-time types, so the major source of confusion goes away. For example,
ArrayList has one constructor that takes an int and a second constructor that
takes a Collection. It is hard to imagine any confusion over which of these two
constructors will be invoked under any circumstances.

Prior to release 1.5, all primitive types were radically different from all refer-
ence types, but this is no longer true in the presence of autoboxing, and it has
caused real trouble. Consider the following program:

public class SetList {
 public static void main(String[] args) {
 Set<Integer> set = new TreeSet<Integer>();
 List<Integer> list = new ArrayList<Integer>();

 for (int i = -3; i < 3; i++) {
 set.add(i);
 list.add(i);
 }
 for (int i = 0; i < 3; i++) {
 set.remove(i);
 list.remove(i);
 }
 System.out.println(set + " " + list);
 }
}

The program adds the integers from -3 through 2 to a sorted set and to a list, and
then makes three identical calls to remove on both the set and the list. If you’re
like most people you’d expect the program to remove the non-negative values (0,
1, and 2) from the set and the list, and to print [-3, -2, -1] [-3, -2, -1]. In fact,
the program removes the non-negative values from the set and the odd values from
the list and prints [-3, -2, -1] [-2, 0, 2]. It is an understatement to call this
behavior confusing.

ITEM 41: USE OVERLOADING JUDICIOUSLY 195

Here’s what’s happening: The call to set.remove(i) selects the overloading
remove(E), where E is the element type of the set (Integer), and autoboxes i
from int to Integer. This is the behavior you’d expect, so the program ends up
removing the positive values from the set. The call to list.remove(i), on the
other hand, selects the overloading remove(int i), which removes the element at
the specified position from a list. If you start with the list [-3, -2, -1, 0, 1, 2]

and remove the zeroth element, then the first, and then the second, you’re left with
[-2, 0, 2], and the mystery is solved. To fix the problem, cast list.remove’s
argument to Integer, forcing the correct overloading to be selected. Alternatively,
you could invoke Integer.valueOf on i and pass the result to list.remove.
Either way, the program prints [-3, -2, -1] [-3, -2, -1], as expected:

for (int i = 0; i < 3; i++) {
set.remove(i);
list.remove((Integer) i); // or remove(Integer.valueOf(i))

}

The confusing behavior demonstrated by the previous example came about
because the List<E> interface has two overloadings of the remove method:
remove(E) and remove(int). Prior to release 1.5 when it was “generified,” the
List interface had a remove(Object) method in place of remove(E), and the cor-
responding parameter types, Object and int, were radically different. But in the
presence of generics and autoboxing, the two parameter types are no longer radi-
cally different. In other words, adding generics and autoboxing to the language
damaged the List interface. Luckily, few if any other APIs in the Java libraries
were similarly damaged, but this tale makes it clear that it is even more important
to overload with care now that autoboxing and generics are part of the language.

Array types and classes other than Object are radically different. Also, array
types and interfaces other than Serializable and Cloneable are radically differ-
ent. Two distinct classes are said to be unrelated if neither class is a descendant of
the other [JLS, 5.5]. For example, String and Throwable are unrelated. It is
impossible for any object to be an instance of two unrelated classes, so unrelated
classes are radically different.

There are other pairs of types that can’t be converted in either direction [JLS,
5.1.12], but once you go beyond the simple cases described above, it becomes very
difficult for most programmers to discern which, if any, overloading applies to a
set of actual parameters. The rules that determine which overloading is selected
are extremely complex. They take up thirty-three pages in the language specifica-
tion [JLS, 15.12.1-3], and few programmers understand all of their subtleties.

CHAPTER 7 METHODS196

There may be times when you feel the need to violate the guidelines in this
item, especially when evolving existing classes. For example, the String class has
had a contentEquals(StringBuffer) method since release 1.4. In release 1.5, a
new interface called CharSequence was added to provide a common interface for
StringBuffer, StringBuilder, String, CharBuffer, and other similar types, all
of which were retrofitted to implement this interface. At the same time that
CharSequence was added to the platform, String was outfitted with an overload-
ing of the contentEquals method that takes a CharSequence.

While the resulting overloading clearly violates the guidelines in this item, it
causes no harm as long as both overloaded methods always do exactly the same
thing when they are invoked on the same object reference. The programmer may
not know which overloading will be invoked, but it is of no consequence so long
as they behave identically. The standard way to ensure this behavior is to have the
more specific overloading forward to the more general:

public boolean contentEquals(StringBuffer sb) {
 return contentEquals((CharSequence) sb);
}

While the Java platform libraries largely adhere to the spirit of the advice in
this item, there are a number of classes that violate it. For example, the String
class exports two overloaded static factory methods, valueOf(char[]) and val-
ueOf(Object), that do completely different things when passed the same object
reference. There is no real justification for this, and it should be regarded as an
anomaly with the potential for real confusion.

To summarize, just because you can overload methods doesn’t mean you
should. You should generally refrain from overloading methods with multiple sig-
natures that have the same number of parameters. In some cases, especially where
constructors are involved, it may be impossible to follow this advice. In that case,
you should at least avoid situations where the same set of parameters can be
passed to different overloadings by the addition of casts. If such a situation cannot
be avoided, for example, because you are retrofitting an existing class to imple-
ment a new interface, you should ensure that all overloadings behave identically
when passed the same parameters. If you fail to do this, programmers will be hard
pressed to make effective use of the overloaded method or constructor, and they
won’t understand why it doesn’t work.

ITEM 42: USE VARARGS JUDICIOUSLY 197

Item 42: Use varargs judiciously

In release 1.5, varargs methods, formally known as variable arity methods [JLS,
8.4.1], were added to the language. Varargs methods accept zero or more
arguments of a specified type. The varargs facility works by first creating an array
whose size is the number of arguments passed at the call site, then putting the
argument values into the array, and finally passing the array to the method.

For example, here is a varargs method that takes a sequence of int arguments
and returns their sum. As you would expect, the value of sum(1, 2, 3) is 6, and
the value of sum() is 0:

// Simple use of varargs
static int sum(int... args) {

int sum = 0;
for (int arg : args)

sum += arg;
return sum;

}

Sometimes it’s appropriate to write a method that requires one or more argu-
ments of some type, rather than zero or more. For example, suppose you want to
compute the minimum of a number of int arguments. This function is not well
defined if the client passes no arguments. You could check the array length at runt-
ime:

// The WRONG way to use varargs to pass one or more arguments!
static int min(int... args) {

if (args.length == 0)
throw new IllegalArgumentException("Too few arguments");

int min = args[0];
for (int i = 1; i < args.length; i++)

if (args[i] < min)
min = args[i];

return min;
}

This solution has several problems. The most serious is that if the client
invokes this method with no arguments, it fails at runtime rather than compile
time. Another problem is that it is ugly. You have to include an explicit validity
check on args, and you can’t use a for-each loop unless you initialize min to
Integer.MAX_VALUE, which is also ugly.

CHAPTER 7 METHODS198

Luckily there’s a much better way to achieve the desired effect. Declare the
method to take two parameters, one normal parameter of the specified type and
one varargs parameter of this type. This solution corrects all the deficiencies of the
previous one:

// The right way to use varargs to pass one or more arguments
static int min(int firstArg, int... remainingArgs) {

int min = firstArg;
for (int arg : remainingArgs)

if (arg < min)
min = arg;

return min;
}

As you can see from this example, varargs are effective in circumstances
where you really do want a method with a variable number of arguments. Varargs
were designed for printf, which was added to the platform in release 1.5, and for
the core reflection facility (Item 53), which was retrofitted to take advantage of
varargs in that release. Both printf and reflection benefit enormously from
varargs.

You can retrofit an existing method that takes an array as its final parameter to
take a varargs parameter instead with no effect on existing clients. But just
because you can doesn’t mean that you should! Consider the case of
Arrays.asList. This method was never designed to gather multiple arguments
into a list, but it seemed like a good idea to retrofit it to do so when varargs were
added to the platform. As a result, it became possible to do things like this:

List<String> homophones = Arrays.asList("to", "too", "two");

This usage works, but it was a big mistake to enable it. Prior to release 1.5,
this was a common idiom to print the contents of an array:

// Obsolete idiom to print an array!
System.out.println(Arrays.asList(myArray));

The idiom was necessary because arrays inherit their toString implementation
from Object, so calling toString directly on an array produces a useless string
such as [Ljava.lang.Integer;@3e25a5. The idiom worked only on arrays of

ITEM 42: USE VARARGS JUDICIOUSLY 199

object reference types, but if you accidentally tried it on an array of primitives, the
program wouldn’t compile. For example, this program:

public static void main(String[] args) {
int[] digits = { 3, 1, 4, 1, 5, 9, 2, 6, 5, 4 };
System.out.println(Arrays.asList(digits));

}

would generate this error message in release 1.4:

Va.java:6: asList(Object[]) in Arrays can't be applied to (int[])
System.out.println(Arrays.asList(digits));

 ^

Because of the unfortunate decision to retrofit Arrays.asList as a varargs
method in release 1.5, this program now compiles without error or warning. Run-
ning the program, however, produces output that is both unintended and useless:
[[I@3e25a5]. The Arrays.asList method, now “enhanced” to use varargs, gath-
ers up the object reference to the int array digits into a one-element array of
arrays and dutifully wraps it into a List<int[]> instance. Printing this list causes
toString to be invoked on the list, which in turn causes toString to be invoked
on its sole element, the int array, with the unfortunate result described above.

On the bright side, the Arrays.asList idiom for translating arrays to strings
is now obsolete, and the current idiom is far more robust. Also in release 1.5, the
Arrays class was given a full complement of Arrays.toString methods (not
varargs methods!) designed specifically to translate arrays of any type into strings.
If you use Arrays.toString in place of Arrays.asList, the program produces
the intended result:

// The right way to print an array
System.out.println(Arrays.toString(myArray));

Instead of retrofitting Arrays.asList, it would have been better to add a new
method to Collections specifically for the purpose of gathering its arguments
into a list:

public static <T> List<T> gather(T... args) {
return Arrays.asList(args);

}

CHAPTER 7 METHODS200

Such a method would have provided the capability to gather without
compromising the type-checking of the existing Arrays.asList method.

The lesson is clear. Don’t retrofit every method that has a final array
parameter; use varargs only when a call really operates on a variable-length
sequence of values.

Two method signatures are particularly suspect:

ReturnType1 suspect1(Object... args) { }
<T> ReturnType2 suspect2(T... args) { }

Methods with either of these signatures will accept any parameter list. Any
compile-time type-checking that you had prior to the retrofit will be lost, as
demonstrated by what happened to Arrays.asList.

Exercise care when using the varargs facility in performance-critical situa-
tions. Every invocation of a varargs method causes an array allocation and initial-
ization. If you have determined empirically that you can’t afford this cost but you
need the flexibility of varargs, there is a pattern that lets you have your cake and
eat it too. Suppose you’ve determined that 95 percent of the calls to a method have
three or fewer parameters. Then declare five overloadings of the method, one each
with zero through three ordinary parameters, and a single varargs method for use
when the number of arguments exceeds three:

public void foo() { }
public void foo(int a1) { }
public void foo(int a1, int a2) { }
public void foo(int a1, int a2, int a3) { }
public void foo(int a1, int a2, int a3, int... rest) { }

Now you know that you’ll pay the cost of the array creation only in the 5 percent
of all invocations where the number of parameters exceeds three. Like most
performance optimizations, this technique usually isn’t appropriate, but when it is,
it’s a lifesaver.

The EnumSet class uses this technique for its static factories to reduce the cost
of creating enum sets to a bare minimum. It was appropriate to do this because it
was critical that enum sets provide performance-competitive replacements for bit
fields (Item 32).

In summary, varargs methods are a convenient way to define methods that
require a variable number of arguments, but they should not be overused. They
can produce confusing results if used inappropriately.

ITEM 43: RETURN EMPTY ARRAYS OR COLLECTIONS, NOT NULLS 201

Item 43: Return empty arrays or collections, not nulls

It is not uncommon to see methods that look something like this:

private final List<Cheese> cheesesInStock = ...;

/**
 * @return an array containing all of the cheeses in the shop,
 * or null if no cheeses are available for purchase.
 */
public Cheese[] getCheeses() {

if (cheesesInStock.size() == 0)
return null;

...
}

There is no reason to make a special case for the situation where no cheeses
are available for purchase. Doing so requires extra code in the client to handle the
null return value, for example:

Cheese[] cheeses = shop.getCheeses();
if (cheeses != null &&

Arrays.asList(cheeses).contains(Cheese.STILTON))
System.out.println("Jolly good, just the thing.");

instead of:

if (Arrays.asList(shop.getCheeses()).contains(Cheese.STILTON))
System.out.println("Jolly good, just the thing.");

This sort of circumlocution is required in nearly every use of a method that
returns null in place of an empty (zero-length) array or collection. It is error-
prone, because the programmer writing the client might forget to write the special-
case code to handle a null return. Such an error may go unnoticed for years, as
such methods usually return one or more objects. Less significant, but still worthy
of note, returning null in place of an empty array also complicates the method
that returns the array or collection.

It is sometimes argued that a null return value is preferable to an empty array
because it avoids the expense of allocating the array. This argument fails on two
counts. First, it is inadvisable to worry about performance at this level unless pro-
filing has shown that the method in question is a real contributor to performance
problems (Item 55). Second, it is possible to return the same zero-length array

CHAPTER 7 METHODS202

from every invocation that returns no items because zero-length arrays are immu-
table and immutable objects may be shared freely (Item 15). In fact, this is exactly
what happens when you use the standard idiom for dumping items from a collec-
tion into a typed array:

// The right way to return an array from a collection
private final List<Cheese> cheesesInStock = ...;

private static final Cheese[] EMPTY_CHEESE_ARRAY = new Cheese[0];

/**
* @return an array containing all of the cheeses in the shop.
*/
public Cheese[] getCheeses() {

return cheesesInStock.toArray(EMPTY_CHEESE_ARRAY);
}

In this idiom, an empty-array constant is passed to the toArray method to
indicate the desired return type. Normally the toArray method allocates the
returned array, but if the collection is empty, it fits in the zero-length input array,
and the specification for Collection.toArray(T[]) guarantees that the input
array will be returned if it is large enough to hold the collection. Therefore the
idiom never allocates an empty array.

In similar fashion, a collection-valued method can be made to return the same
immutable empty collection every time it needs to return an empty collection. The
Collections.emptySet, emptyList, and emptyMap methods provide exactly
what you need, as shown below:

// The right way to return a copy of a collection
public List<Cheese> getCheeseList() {
 if (cheesesInStock.isEmpty())
 return Collections.emptyList(); // Always returns same list
 else
 return new ArrayList<Cheese>(cheesesInStock);
}

In summary, there is no reason ever to return null from an array- or
collection-valued method instead of returning an empty array or collection.
The null-return idiom is likely a holdover from the C programming language, in
which array lengths are returned separately from actual arrays. In C, there is no
advantage to allocating an array if zero is returned as the length.

ITEM 44: WRITE DOC COMMENTS FOR ALL EXPOSED API ELEMENTS 203

Item 44: Write doc comments for all exposed API elements

If an API is to be usable, it must be documented. Traditionally API documentation
was generated manually, and keeping it in sync with code was a chore. The Java
programming environment eases this task with the Javadoc utility. Javadoc
generates API documentation automatically from source code with specially
formatted documentation comments, more commonly known as doc comments.

If you are not familiar with the doc comment conventions, you should learn
them. While these conventions are not officially part of the language, they consti-
tute a de facto API that every programmer should know. These conventions are
described on Sun’s How to Write Doc Comments Web page [Javadoc-guide].
While this page has not been updated since release 1.4, it is still an invaluable
resource. Two important Javadoc tags were added to Javadoc in release 1.5,
{@literal} and {@code} [Javadoc-5.0]. These tags are discussed in this item.

To document your API properly, you must precede every exported class,
interface, constructor, method, and field declaration with a doc comment. If a
class is serializable, you should also document its serialized form (Item 75). In the
absence of a doc comment, the best that Javadoc can do is to reproduce the decla-
ration as the sole documentation for the affected API element. It is frustrating and
error-prone to use an API with missing documentation comments. To write main-
tainable code, you should also write doc comments for most unexported classes,
interfaces, constructors, methods, and fields.

The doc comment for a method should describe succinctly the contract
between the method and its client. With the exception of methods in classes
designed for inheritance (Item 17), the contract should say what the method does
rather than how it does its job. The doc comment should enumerate all of the
method’s preconditions, which are the things that have to be true in order for a cli-
ent to invoke it, and its postconditions, which are the things that will be true after
the invocation has completed successfully. Typically, preconditions are described
implicitly by the @throws tags for unchecked exceptions; each unchecked excep-
tion corresponds to a precondition violation. Also, preconditions can be specified
along with the affected parameters in their @param tags.

In addition to preconditions and postconditions, methods should document
any side effects. A side effect is an observable change in the state of the system
that is not obviously required in order to achieve the postcondition. For example,
if a method starts a background thread, the documentation should make note of it.
Finally, documentation comments should describe the thread safety of a class or
method, as discussed in Item 70.

CHAPTER 7 METHODS204

To describe a method’s contract fully, the doc comment should have an
@param tag for every parameter, an @return tag unless the method has a void
return type, and an @throws tag for every exception thrown by the method,
whether checked or unchecked (Item 62). By convention, the text following an
@param tag or @return tag should be a noun phrase describing the value repre-
sented by the parameter or return value. The text following an @throws tag
should consist of the word “if,” followed by a clause describing the conditions
under which the exception is thrown. Occasionally, arithmetic expressions are
used in place of noun phrases. By convention, the phrase or clause following an
@param, @return, or @throws tag is not terminated by a period. All of these con-
ventions are illustrated by the following short doc comment:

/**
* Returns the element at the specified position in this list.
*
* <p>This method is <i>not</i> guaranteed to run in constant
* time. In some implementations it may run in time proportional
* to the element position.
*
* @param index index of element to return; must be
* non-negative and less than the size of this list
* @return the element at the specified position in this list
* @throws IndexOutOfBoundsException if the index is out of range
* ({@code index < 0 || index >= this.size()})
*/
E get(int index);

Notice the use of HTML tags in this doc comment (<p> and <i>). The Javadoc
utility translates doc comments into HTML, and arbitrary HTML elements in doc
comments end up in the resulting HTML document. Occasionally, programmers
go so far as to embed HTML tables in their doc comments, although this is rare.

Also notice the use of the Javadoc {@code} tag around the code fragment in
the @throws clause. This serves two purposes: it causes the code fragment to be
rendered in code font, and it suppresses processing of HTML markup and nested
Javadoc tags in the code fragment. The latter property is what allows us to use the
less-than sign (<) in the code fragment even though it’s an HTML metacharacter.
Prior to release 1.5, code fragments were included in doc comments by using
HTML tags and HTML escapes. It is no longer necessary to use the HTML
<code> or <tt> tags in doc comments: the Javadoc {@code} tag is preferable
because it eliminates the need to escape HTML metacharacters. To include a
multiline code example in a doc comment, use a Javadoc {@code} tag wrapped

ITEM 44: WRITE DOC COMMENTS FOR ALL EXPOSED API ELEMENTS 205

inside an HTML <pre> tag. In other words, precede the multiline code example
with the characters <pre>{@code and follow it with the characters }</pre>.

Finally, notice the use of the word “this” in the doc comment. By convention,
the word “this” always refers to the object on which the method is invoked when it
is used in the doc comment for an instance method.

Don’t forget that you must take special action to generate documentation con-
taining HTML metacharacters, such as the less-than sign (<), the greater-than sign
(>), and the ampersand (&). The best way to get these characters into documenta-
tion is to surround them with the {@literal} tag, which suppress processing of
HTML markup and nested Javadoc tags. It is like the {@code} tag, except that it
doesn’t render the text in code font. For example, this Javadoc fragment:

* The triangle inequality is {@literal |x + y| < |x| + |y|}.

produces the documentation: “The triangle inequality is |x + y| < |x| + |y|.” The
{@literal} tag could have been placed around just the less-than sign rather than
the entire inequality with the same resulting documentation, but the doc comment
would have been less readable in the source code. This illustrates the general
principle that doc comments should be readable in both the source code and in the
generated documentation. If you can’t achieve both, generated documentation
readability trumps source code readability.

The first “sentence” of each doc comment (as defined below) becomes the
summary description of the element to which the comment pertains. For example,
the summary description in the doc comment on page 204 is “Returns the element
at the specified position in this list.” The summary description must stand on its
own to describe the functionality of the element it summarizes. To avoid confu-
sion, no two members or constructors in a class or interface should have the
same summary description. Pay particular attention to overloadings, for which it
is often natural to use the same first sentence in a prose description (but unaccept-
able in doc comments).

Be careful if the intended summary description contains a period, because the
period can prematurely terminate the description. For example, a doc comment
that begins with the phrase “A college degree, such as B.S., M.S. or Ph.D.”
will result in the summary description “A college degree, such as B.S., M.S.” The
problem is that the summary description ends at the first period that is followed by
a space, tab, or line terminator (or at the first block tag) [Javadoc-ref]. In this case,
the second period in the abbreviation “M.S.” is followed by a space. The best solu-
tion is to surround the offending period and any associated text with a {@literal}
tag, so the period is no longer followed by a space in the source code:

CHAPTER 7 METHODS206

/**
 * A college degree, such as B.S., {@literal M.S.} or Ph.D.
 * College is a fountain of knowledge where many go to drink.
 */
public class Degree { ... }

It is somewhat misleading to say that the summary description is the first sen-
tence in a doc comment. Convention dictates that it should seldom be a complete
sentence. For methods and constructors, the summary description should be a full
verb phrase (including any object) describing the action performed by the method.
For example,

• ArrayList(int initialCapacity)—Constructs an empty list with the spec-
ified initial capacity.

• Collection.size()—Returns the number of elements in this collection.

For classes, interfaces, and fields, the summary description should be a noun
phrase describing the thing represented by an instance of the class or interface or
by the field itself. For example,

• TimerTask—A task that can be scheduled for one-time or repeated execution
by a Timer.

• Math.PI—The double value that is closer than any other to pi, the ratio of the
circumference of a circle to its diameter.

Three features added to the language in release 1.5 require special care in doc
comments: generics, enums, and annotations. When documenting a generic type
or method, be sure to document all type parameters:

/**
 * An object that maps keys to values. A map cannot contain
 * duplicate keys; each key can map to at most one value.
 *
 * (Remainder omitted)
 *
 * @param <K> the type of keys maintained by this map
 * @param <V> the type of mapped values
 */
public interface Map<K, V> {
 ... // Remainder omitted
}

ITEM 44: WRITE DOC COMMENTS FOR ALL EXPOSED API ELEMENTS 207

When documenting an enum type, be sure to document the constants as
well as the type and any public methods. Note that you can put an entire doc com-
ment on one line if it’s short:

/**
 * An instrument section of a symphony orchestra.
 */
public enum OrchestraSection {
 /** Woodwinds, such as flute, clarinet, and oboe. */
 WOODWIND,

 /** Brass instruments, such as french horn and trumpet. */
 BRASS,

 /** Percussion instruments, such as timpani and cymbals */
 PERCUSSION,

 /** Stringed instruments, such as violin and cello. */
 STRING;
}

When documenting an annotation type, be sure to document any mem-
bers as well as the type itself. Document members with noun phrases, as if they
were fields. For the summary description of the type, use a verb phrase that says
what it means when a program element has an annotation of this type:

/**
 * Indicates that the annotated method is a test method that
 * must throw the designated exception to succeed.
 */
@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)
public @interface ExceptionTest {
 /**
 * The exception that the annotated test method must throw
 * in order to pass. (The test is permitted to throw any
 * subtype of the type described by this class object.)
 */
 Class<? extends Exception> value();
}

As of release 1.5, package-level doc comments should be placed in a file
called package-info.java instead of package.html. In addition to package-
level doc comments, package-info.java can (but is not required to) contain a
package declaration and package annotations.

CHAPTER 7 METHODS208

Two aspects of a class’s exported API that are often neglected are thread-
safety and serializability. Whether or not a class is thread-safe, you should docu-
ment its thread-safety level, as described in Item 70. If a class is serializable, you
should document its serialized form, as described in Item 75.

Javadoc has the ability to “inherit” method comments. If an API element does
not have a doc comment, Javadoc searches for the most specific applicable doc
comment, giving preference to interfaces over superclasses. The details of the
search algorithm can be found in The Javadoc Reference Guide [Javadoc-ref]. You
can also inherit parts of doc comments from supertypes using the {@inheritDoc}
tag. This means, among other things, that classes can reuse doc comments from
interfaces they implement, rather than copying these comments. This facility has
the potential to reduce the burden of maintaining multiple sets of nearly identical
doc comments, but it is tricky to use and has some limitations. The details are
beyond the scope of this book.

A simple way to reduce the likelihood of errors in documentation comments is
to run the HTML files generated by Javadoc through an HTML validity checker.
This will detect many incorrect uses of HTML tags, as well as HTML metacharac-
ters that should have been escaped. Several HTML validity checkers are available
for download and you can validate HTML online [W3C-validator].

One caveat should be added concerning documentation comments. While it is
necessary to provide documentation comments for all exported API elements, it is
not always sufficient. For complex APIs consisting of multiple interrelated
classes, it is often necessary to supplement the documentation comments with an
external document describing the overall architecture of the API. If such a docu-
ment exists, the relevant class or package documentation comments should
include a link to it.

The conventions described in this item cover the basics. The definitive guide
to writing doc comments is Sun’s How to Write Doc Comments [Javadoc-guide].
There are IDE plug-ins that check for adherence to many of these rules [Burn01].

To summarize, documentation comments are the best, most effective way to
document your API. Their use should be considered mandatory for all exported
API elements. Adopt a consistent style that adheres to standard conventions.
Remember that arbitrary HTML is permissible within documentation comments
and that HTML metacharacters must be escaped.

209

C H A P T E R 8
General Programming

THIS chapter is largely devoted to the nuts and bolts of the language. It dis-
cusses the treatment of local variables, control structures, the use of libraries, the
use of various data types, and the use of two extralinguistic facilities: reflection
and native methods. Finally, it discusses optimization and naming conventions.

Item 45: Minimize the scope of local variables

This item is similar in nature to Item 13, “Minimize the accessibility of classes
and members.” By minimizing the scope of local variables, you increase the read-
ability and maintainability of your code and reduce the likelihood of error.

Older programming languages, such as C, mandated that local variables must
be declared at the head of a block, and some programmers continue to do this out
of habit. It’s a habit worth breaking. As a gentle reminder, Java lets you declare
variables anywhere a statement is legal.

The most powerful technique for minimizing the scope of a local variable
is to declare it where it is first used. If a variable is declared before it is used, it’s
just clutter—one more thing to distract the reader who is trying to figure out what
the program does. By the time the variable is used, the reader might not remember
the variable’s type or initial value.

Declaring a local variable prematurely can cause its scope not only to extend
too early, but also to end too late. The scope of a local variable extends from the
point where it is declared to the end of the enclosing block. If a variable is
declared outside of the block in which it is used, it remains visible after the pro-
gram exits that block. If a variable is used accidentally before or after its region of
intended use, the consequences can be disastrous.

Nearly every local variable declaration should contain an initializer. If
you don’t yet have enough information to initialize a variable sensibly, you should

CHAPTER 8 GENERAL PROGRAMMING210

postpone the declaration until you do. One exception to this rule concerns try-
catch statements. If a variable is initialized by a method that throws a checked
exception, it must be initialized inside a try block. If the value must be used
outside of the try block, then it must be declared before the try block, where it
cannot yet be “sensibly initialized.” For example, see page 231.

Loops present a special opportunity to minimize the scope of variables. The
for loop, in both its traditional and for-each forms, allows you to declare loop
variables, limiting their scope to the exact region where they’re needed. (This
region consists of the body of the loop as well as the initialization, test, and update
preceding the body.) Therefore, prefer for loops to while loops, assuming the
contents of the loop variable aren’t needed after the loop terminates.

For example, here is the preferred idiom for iterating over a collection (Item 46):

// Preferred idiom for iterating over a collection
for (Element e : c) {

doSomething(e);
}

Before release 1.5, this was the preferred idiom (and it still has valid uses):

// No for-each loop or generics before release 1.5
for (Iterator i = c.iterator(); i.hasNext();) {

doSomething((Element) i.next());
}

To see why these for loops are preferable to a while loop, consider the following
code fragment, which contains two while loops and one bug:

Iterator<Element> i = c.iterator();
while (i.hasNext()) {

doSomething(i.next());
}
...

Iterator<Element> i2 = c2.iterator();
while (i.hasNext()) { // BUG!

doSomethingElse(i2.next());
}

The second loop contains a cut-and-paste error: it initializes a new loop variable,
i2, but uses the old one, i, which is, unfortunately, still in scope. The resulting
code compiles without error and runs without throwing an exception, but it does
the wrong thing. Instead of iterating over c2, the second loop terminates immedi-

ITEM 45: MINIMIZE THE SCOPE OF LOCAL VARIABLES 211

ately, giving the false impression that c2 is empty. Because the program errs
silently, the error can remain undetected for a long time.

If a similar cut-and-paste error were made in conjunction with either of the
for loops (for-each or traditional), the resulting code wouldn’t even compile. The
element (or iterator) variable from the first loop would not be in scope at the point
where the second loop occurred. Here’s how it looks for the traditional for loop:

for (Iterator<Element> i = c.iterator(); i.hasNext();) {
doSomething(i.next());

}
 ...

// Compile-time error - cannot find symbol i
for (Iterator<Element> i2 = c2.iterator(); i.hasNext();) {

doSomething(i2.next());
}

Moreover, if you use a for loop, it’s much less likely that you’ll make the cut-
and-paste error, as there’s no incentive to use different variable names in the two
loops. The loops are completely independent, so there’s no harm in reusing the
element (or iterator) variable name. In fact, it’s often stylish to do so.

The for loop has one more advantage over the while loop: it is shorter, which
enhances readability.

Here is another loop idiom that minimizes the scope of local variables:

for (int i = 0, n = expensiveComputation(); i < n; i++) {
doSomething(i);

}

The important thing to notice about this idiom is that it has two loop variables, i
and n, both of which have exactly the right scope. The second variable, n, is used
to store the limit of the first, thus avoiding the cost of a redundant computation on
every iteration. As a rule, you should use this idiom if the loop test involves a
method invocation that is guaranteed to return the same result on each iteration.

A final technique to minimize the scope of local variables is to keep methods
small and focused. If you combine two activities in the same method, local vari-
ables relevant to one activity may be in the scope of the code performing the other
activity. To prevent this from happening, simply separate the method into two: one
for each activity.

CHAPTER 8 GENERAL PROGRAMMING212

Item 46: Prefer for-each loops to traditional for loops

Prior to release 1.5, this was the preferred idiom for iterating over a collection:

// No longer the preferred idiom to iterate over a collection!
for (Iterator i = c.iterator(); i.hasNext();) {

doSomething((Element) i.next()); // (No generics before 1.5)
}

This was the preferred idiom for iterating over an array:

// No longer the preferred idiom to iterate over an array!
for (int i = 0; i < a.length; i++) {

doSomething(a[i]);
}

These idioms are better than while loops (Item 45), but they aren’t perfect. The
iterator and the index variables are both just clutter. Furthermore, they represent
opportunities for error. The iterator and the index variable occur three times in
each loop, which gives you two chances to get them wrong. If you do, there is no
guarantee that the compiler will catch the problem.

The for-each loop, introduced in release 1.5, gets rid of the clutter and the
opportunity for error by hiding the iterator or index variable completely. The
resulting idiom applies equally to collections and arrays:

// The preferred idiom for iterating over collections and arrays
for (Element e : elements) {

doSomething(e);
}

When you see the colon (:), read it as “in.” Thus, the loop above reads as “for
each element e in elements.” Note that there is no performance penalty for using
the for-each loop, even for arrays. In fact, it may offer a slight performance advan-
tage over an ordinary for loop in some circumstances, as it computes the limit of
the array index only once. While you can do this by hand (Item 45), programmers
don’t always do so.

The advantages of the for-each loop over the traditional for loop are even
greater when it comes to nested iteration over multiple collections. Here is a com-
mon mistake that people make when they try to do nested iteration over two col-
lections:

ITEM 46: PREFER FOR-EACH LOOPS TO TRADITIONAL FOR LOOPS 213

// Can you spot the bug?
enum Suit { CLUB, DIAMOND, HEART, SPADE }
enum Rank { ACE, DEUCE, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT,
 NINE, TEN, JACK, QUEEN, KING }
...
Collection<Suit> suits = Arrays.asList(Suit.values());
Collection<Rank> ranks = Arrays.asList(Rank.values());

List<Card> deck = new ArrayList<Card>();
for (Iterator<Suit> i = suits.iterator(); i.hasNext();)

for (Iterator<Rank> j = ranks.iterator(); j.hasNext();)
deck.add(new Card(i.next(), j.next()));

Don’t feel bad if you didn’t spot the bug. Many expert programmers have
made this mistake at one time or another. The problem is that the next method is
called too many times on the iterator for the outer collection (suits). It should be
called from the outer loop, so that it is called once per suit, but instead it is called
from the inner loop, so it is called once per card. After you run out of suits, the
loop throws a NoSuchElementException.

If you’re really unlucky and the size of the outer collection is a multiple of the
size of the inner collection—perhaps because they’re the same collection—the
loop will terminate normally, but it won’t do what you want. For example, con-
sider this ill-conceived attempt to print all of the possible rolls of a pair of dice:

// Same bug, different symptom!
enum Face { ONE, TWO, THREE, FOUR, FIVE, SIX }
...
Collection<Face> faces = Arrays.asList(Face.values());

for (Iterator<Face> i = faces.iterator(); i.hasNext();)
for (Iterator<Face> j = faces.iterator(); j.hasNext();)

System.out.println(i.next() + " " + j.next());

This program doesn’t throw an exception but it prints only the six “doubles” (from
“ONE ONE” to “SIX SIX”), instead of the expected thirty-six combinations.

To fix the bugs in these examples, you must add a variable in the scope of the
outer loop to hold the outer element:

// Fixed, but ugly - you can do better!
for (Iterator<Suit> i = suits.iterator(); i.hasNext();) {

Suit suit = i.next();
for (Iterator<Rank> j = ranks.iterator(); j.hasNext();)

deck.add(new Card(suit, j.next()));
}

CHAPTER 8 GENERAL PROGRAMMING214

If instead you use a nested for-each loop, the problem simply disappears. The
resulting code is as succinct as you could wish for:

// Preferred idiom for nested iteration on collections and arrays
for (Suit suit : suits)

for (Rank rank : ranks)
deck.add(new Card(suit, rank));

Not only does the for-each loop let you iterate over collections and arrays, it
lets you iterate over any object that implements the Iterable interface. This sim-
ple interface, which consists of a single method, was added to the platform at the
same time as the for-each loop. Here is how it looks:

public interface Iterable<E> {
// Returns an iterator over the elements in this iterable
Iterator<E> iterator();

}

It is not hard to implement the Iterable interface. If you are writing a type
that represents a group of elements, have it implement Iterable even if you
choose not to have it implement Collection. This will allow your users to iterate
over your type using the for-each loop, and they will be forever grateful.

In summary, the for-each loop provides compelling advantages over the tradi-
tional for loop in clarity and bug prevention, with no performance penalty. You
should use it wherever you can. Unfortunately, there are three common situations
where you can’t use a for-each loop:

1. Filtering—If you need to traverse a collection and remove selected elements,
then you need to use an explicit iterator so that you can call its remove method.

2. Transforming—If you need to traverse a list or array and replace some or all
of the values of its elements, then you need the list iterator or array index in
order to set the value of an element.

3. Parallel iteration—If you need to traverse multiple collections in parallel,
then you need explicit control over the iterator or index variable, so that all it-
erators or index variables can be advanced in lockstep (as demonstrated unin-
tentionally in the buggy card and dice examples above).

If you find yourself in any of these situations, use an ordinary for loop, be wary of
the traps mentioned in this item, and know that you’re doing the best you can.

ITEM 47: KNOW AND USE THE LIBRARIES 215

Item 47: Know and use the libraries

Suppose you want to generate random integers between zero and some upper
bound. Faced with this common task, many programmers would write a little
method that looks something like this:

private static final Random rnd = new Random();

// Common but deeply flawed!
static int random(int n) {

return Math.abs(rnd.nextInt()) % n;
}

This method may look good, but it has three flaws. The first is that if n is a
small power of two, the sequence of random numbers it generates will repeat itself
after a fairly short period. The second flaw is that if n is not a power of two, some
numbers will, on average, be returned more frequently than others. If n is large,
this effect can be quite pronounced. This is graphically demonstrated by the fol-
lowing program, which generates a million random numbers in a carefully chosen
range and then prints out how many of the numbers fell in the lower half of the
range:

public static void main(String[] args) {
int n = 2 * (Integer.MAX_VALUE / 3);
int low = 0;
for (int i = 0; i < 1000000; i++)

if (random(n) < n/2)
low++;

System.out.println(low);
}

If the random method worked properly, the program would print a number
close to half a million, but if you run it, you’ll find that it prints a number close to
666,666. Two-thirds of the numbers generated by the random method fall in the
lower half of its range!

The third flaw in the random method is that it can, on rare occasions, fail cata-
strophically, returning a number outside the specified range. This is so because the
method attempts to map the value returned by rnd.nextInt() to a non-negative
int by calling Math.abs. If nextInt() returns Integer.MIN_VALUE, Math.abs
will also return Integer.MIN_VALUE, and the remainder operator (%) will return a

CHAPTER 8 GENERAL PROGRAMMING216

negative number, assuming n is not a power of two. This will almost certainly
cause your program to fail, and the failure may be difficult to reproduce.

To write a version of the random method that corrects these three flaws, you’d
have to know a fair amount about pseudorandom number generators, number the-
ory, and two’s complement arithmetic. Luckily, you don’t have to do this—it’s
been done for you. It’s called Random.nextInt(int), and it has been a part of the
Java platform since release 1.2.

You don’t have to concern yourself with the details of how nextInt(int)
does its job (although you can study the documentation or the source code if
you’re curious). A senior engineer with a background in algorithms spent a good
deal of time designing, implementing, and testing this method and then showed it
to several experts in the field to make sure it was right. Then the library was beta
tested, released, and used extensively by millions of programmers for the better
part of a decade. No flaws have yet been found in the method, but if a flaw were to
be discovered, it would be fixed in the next release. By using a standard library,
you take advantage of the knowledge of the experts who wrote it and the
experience of those who used it before you.

A second advantage of using the libraries is that you don’t have to waste your
time writing ad hoc solutions to problems that are only marginally related to your
work. If you are like most programmers, you’d rather spend your time working on
your application than on the underlying plumbing.

A third advantage of using standard libraries is that their performance tends to
improve over time, with no effort on your part. Because many people use them
and because they’re used in industry-standard benchmarks, the organizations that
supply these libraries have a strong incentive to make them run faster. Many of the
Java platform libraries have been rewritten over the years, sometimes repeatedly,
resulting in dramatic performance improvements.

Libraries also tend to gain new functionality over time. If a library is missing
something, the developer community will make it known, and the missing func-
tionality may get added to a subsequent release. The Java platform has always
been developed with substantial input from the community.

A final advantage of using the standard libraries is that you place your code in
the mainstream. Such code is more easily readable, maintainable, and reusable by
the multitude of developers.

Given all these advantages, it seems only logical to use library facilities in
preference to ad hoc implementations, yet a significant fraction of programmers
don’t. Why? Perhaps they don’t know the library facilities exist. Numerous fea-
tures are added to the libraries in every major release, and it pays to keep

ITEM 47: KNOW AND USE THE LIBRARIES 217

abreast of these additions. Each time there is a major release of the Java plat-
form, Sun publishes a Web page describing its new features. These pages are well
worth reading [Java5-feat, Java6-feat]. The libraries are too big to study all the
documentation [JavaSE6], but every programmer should be familiar with the
contents of java.lang, java.util, and, to a lesser extent, java.io. Knowledge
of other libraries can be acquired on an as-needed basis.

It is beyond the scope of this item to summarize the facilities in the libraries,
but two bear special mention. In the 1.2 release, a Collections Framework was
added to the java.util package. It should be part of every programmer’s basic
toolkit. The Collections Framework is a unified architecture for representing and
manipulating collections, allowing them to be manipulated independently of the
details of their representation. It reduces programming effort while increasing per-
formance. It allows for interoperability among unrelated APIs, reduces effort in
designing and learning new APIs, and fosters software reuse. If you want to know
more, see the documentation on Sun’s Web site [Collections], or read the tutorial
[Bloch06].

In release 1.5, a set of concurrency utilities was added, in the package
java.util.concurrent. This package contains both high-level concurrency utili-
ties to simplify the task of multithreaded programming and low-level concurrency
primitives to allow experts to write their own higher-level concurrent abstractions.
The high-level parts of java.util.concurrent should also be part of every pro-
grammer’s basic toolkit (Item 68, Item 69).

Occasionally, a library facility can fail to meet your needs. The more special-
ized your needs, the more likely this is to happen. While your first impulse should
be to use the libraries, if you’ve looked at what they have to offer in some area and
it doesn’t meet your needs, then use an alternate implementation. There will
always be holes in the functionality provided by any finite set of libraries. If the
functionality that you need is missing, you may have no choice but to implement it
yourself.

To summarize, don’t reinvent the wheel. If you need to do something that
seems like it should be reasonably common, there may already be a class in the
libraries that does what you want. If there is, use it; if you don’t know, check. Gen-
erally speaking, library code is likely to be better than code that you’d write your-
self and is likely to improve over time. This is no reflection on your abilities as a
programmer. Economies of scale dictate that library code receives far more atten-
tion than most developers could afford to devote to the same functionality.

CHAPTER 8 GENERAL PROGRAMMING218

Item 48: Avoid float and double if exact answers are required

The float and double types are designed primarily for scientific and engineering
calculations. They perform binary floating-point arithmetic, which was carefully
designed to furnish accurate approximations quickly over a broad range of magni-
tudes. They do not, however, provide exact results and should not be used where
exact results are required. The float and double types are particularly ill-
suited for monetary calculations because it is impossible to represent 0.1 (or any
other negative power of ten) as a float or double exactly.

For example, suppose you have $1.03 in your pocket, and you spend 42¢.
How much money do you have left? Here’s a naive program fragment that
attempts to answer this question:

System.out.println(1.03 - .42);

Unfortunately, it prints out 0.6100000000000001. This is not an isolated case.
Suppose you have a dollar in your pocket, and you buy nine washers priced at ten
cents each. How much change do you get?

System.out.println(1.00 - 9 * .10);

According to this program fragment, you get $0.09999999999999998.
You might think that the problem could be solved merely by rounding results

prior to printing, but unfortunately this does not always work. For example, sup-
pose you have a dollar in your pocket, and you see a shelf with a row of delicious
candies priced at 10¢, 20¢, 30¢, and so forth, up to a dollar. You buy one of each
candy, starting with the one that costs 10¢, until you can’t afford to buy the next
candy on the shelf. How many candies do you buy, and how much change do you
get? Here’s a naive program designed to solve this problem:

// Broken - uses floating point for monetary calculation!
public static void main(String[] args) {

double funds = 1.00;
int itemsBought = 0;
for (double price = .10; funds >= price; price += .10) {

funds -= price;
itemsBought++;

}
System.out.println(itemsBought + " items bought.");
System.out.println("Change: $" + funds);

}

ITEM 48: AVOID FLOAT AND DOUBLE IF EXACT ANSWERS ARE REQUIRED 219

If you run the program, you’ll find that you can afford three pieces of candy, and
you have $0.3999999999999999 left. This is the wrong answer! The right way to
solve this problem is to use BigDecimal, int, or long for monetary calculations.

Here’s a straightforward transformation of the previous program to use the
BigDecimal type in place of double:

public static void main(String[] args) {
final BigDecimal TEN_CENTS = new BigDecimal(".10");

int itemsBought = 0;
BigDecimal funds = new BigDecimal("1.00");
for (BigDecimal price = TEN_CENTS;

funds.compareTo(price) >= 0;
price = price.add(TEN_CENTS)) {

itemsBought++;
funds = funds.subtract(price);

}
System.out.println(itemsBought + " items bought.");
System.out.println("Money left over: $" + funds);

}

If you run the revised program, you’ll find that you can afford four pieces of
candy, with $0.00 left over. This is the correct answer.

There are, however, two disadvantages to using BigDecimal: it’s less conve-
nient than using a primitive arithmetic type, and it’s slower. The latter disadvan-
tage is irrelevant if you’re solving a single short problem, but the former may
annoy you.

An alternative to using BigDecimal is to use int or long, depending on the
amounts involved, and to keep track of the decimal point yourself. In this exam-
ple, the obvious approach is to do all computation in cents instead of dollars.
Here’s a straightforward transformation of the program just shown that takes this
approach:

public static void main(String[] args) {
int itemsBought = 0;
int funds = 100;
for (int price = 10; funds >= price; price += 10) {

itemsBought++;
funds -= price;

}
System.out.println(itemsBought + " items bought.");
System.out.println("Money left over: "+ funds + " cents");

}

CHAPTER 8 GENERAL PROGRAMMING220

In summary, don’t use float or double for any calculations that require an
exact answer. Use BigDecimal if you want the system to keep track of the decimal
point and you don’t mind the inconvenience and cost of not using a primitive type.
Using BigDecimal has the added advantage that it gives you full control over
rounding, letting you select from eight rounding modes whenever an operation
that entails rounding is performed. This comes in handy if you’re performing
business calculations with legally mandated rounding behavior. If performance is
of the essence, you don’t mind keeping track of the decimal point yourself, and
the quantities aren’t too big, use int or long. If the quantities don’t exceed nine
decimal digits, you can use int; if they don’t exceed eighteen digits, you can use
long. If the quantities might exceed eighteen digits, you must use BigDecimal.

ITEM 49: PREFER PRIMITIVE TYPES TO BOXED PRIMITIVES 221

Item 49: Prefer primitive types to boxed primitives

Java has a two-part type system, consisting of primitives, such as int, double, and
boolean, and reference types, such as String and List. Every primitive type has
a corresponding reference type, called a boxed primitive. The boxed primitives
corresponding to int, double, and boolean are Integer, Double, and Boolean.

In release 1.5, autoboxing and auto-unboxing were added to the language. As
mentioned in Item 5, these features blur but do not erase the distinction between
the primitive and boxed primitive types. There are real differences between the
two, and it’s important that you remain aware of which you are using, and that you
choose carefully between them.

There are three major differences between primitives and boxed primitives.
First, primitives have only their values, whereas boxed primitives have identities
distinct from their values. In other words, two boxed primitive instances can have
the same value and different identities. Second, primitive types have only fully
functional values, whereas each boxed primitive type has one nonfunctional value,
which is null, in addition to all of the functional values of its corresponding prim-
itive type. Last, primitives are generally more time- and space-efficient than boxed
primitives. All three of these differences can get you into real trouble if you aren’t
careful.

Consider the following comparator, which is designed to represent ascending
numerical order on Integer values. (Recall that a comparator’s compare method
returns a number that is negative, zero, or positive, depending on whether its first
argument is less than, equal to, or greater than its second.) You would not need to
write this comparator in practice, as it implements the natural ordering on Inte-
ger, which you get without a comparator, but it makes for an interesting example:

// Broken comparator - can you spot the flaw?
Comparator<Integer> naturalOrder = new Comparator<Integer>() {

public int compare(Integer first, Integer second) {
return first < second ? -1 : (first == second ? 0 : 1);

}
};

This comparator looks good on the face of it, and it will pass many tests. For
example, it can be used with Collections.sort to correctly sort a million-ele-
ment list, whether or not the list contains duplicate elements. But this comparator
is deeply flawed. To convince yourself of this, merely print the value of natural-
Order.compare(new Integer(42), new Integer(42)). Both Integer instances

CHAPTER 8 GENERAL PROGRAMMING222

represent the same value (42), so the value of this expression should be 0, but it’s
1, which indicates that the first Integer value is greater than the second.

So what’s the problem? The first test in naturalOrder works fine. Evaluating
the expression first < second causes the Integer instances referred to by first
and second to be auto-unboxed; that is, it extracts their primitive values. The eval-
uation proceeds to check if the first of the resulting int values is less than the sec-
ond. But suppose it is not. Then the next test evaluates the expression
first == second, which performs an identity comparison on the two object refer-
ences. If first and second refer to distinct Integer instances that represent the
same int value, this comparison will return false, and the comparator will incor-
rectly return 1, indicating that the first Integer value is greater than the second.
Applying the == operator to boxed primitives is almost always wrong.

The clearest way to fix the problem is to add two local variables, to store the
primitive int values corresponding to first and second, and to perform all of the
comparisons on these variables. This avoids the erroneous identity comparison:

Comparator<Integer> naturalOrder = new Comparator<Integer>() {
public int compare(Integer first, Integer second) {

int f = first; // Auto-unboxing
int s = second; // Auto-unboxing
return f < s ? -1 : (f == s ? 0 : 1); // No unboxing

}
};

Next, consider this little program:

public class Unbelievable {
static Integer i;

public static void main(String[] args) {

if (i == 42)
System.out.println("Unbelievable");

}
}

No, it doesn’t print Unbelievable—but what it does is almost as strange. It
throws a NullPointerException when evaluating the expression (i == 42). The
problem is that i is an Integer, not an int, and like all object reference fields, its
initial value is null. When the program evaluates the expression (i == 42), it is
comparing an Integer to an int. In nearly every case when you mix primitives
and boxed primitives in a single operation, the boxed primitive is auto-

ITEM 49: PREFER PRIMITIVE TYPES TO BOXED PRIMITIVES 223

unboxed, and this case is no exception. If a null object reference is auto-unboxed,
you get a NullPointerException. As this program demonstrates, it can happen
almost anywhere. Fixing the program is as simple as declaring i to be an int
instead of an Integer.

Finally, consider the program from page 23 (Item 5):

// Hideously slow program! Can you spot the object creation?
public static void main(String[] args) {

Long sum = 0L;
for (long i = 0; i < Integer.MAX_VALUE; i++) {

sum += i;
}
System.out.println(sum);

}

This program is much slower than it should be because it accidentally declares a
local variable (sum) to be of the boxed primitive type Long instead of the primitive
type long. The program compiles without error or warning, and the variable is
repeatedly boxed and unboxed, causing the observed performance degradation.

In all three of the programs discussed in this item, the problem was the same:
the programmer ignored the distinction between primitives and boxed primitives
and suffered the consequences. In the first two programs, the consequences were
outright failure; in the third, severe performance problems.

So when should you use boxed primitives? They have several legitimate uses.
The first is as elements, keys, and values in collections. You can’t put primitives in
collections, so you’re forced to use boxed primitives. This is a special case of a
more general one. You must use boxed primitives as type parameters in parame-
terized types (Chapter 5), because the language does not permit you to use primi-
tives. For example, you cannot declare a variable to be of type Thread-
Local<int>, so you must use ThreadLocal<Integer> instead. Finally, you must
use boxed primitives when making reflective method invocations (Item 53).

In summary, use primitives in preference to boxed primitives whenever you
have the choice. Primitive types are simpler and faster. If you must use boxed
primitives, be careful! Autoboxing reduces the verbosity, but not the danger, of
using boxed primitives. When your program compares two boxed primitives
with the == operator, it does an identity comparison, which is almost certainly not
what you want. When your program does mixed-type computations involving
boxed and unboxed primitives, it does unboxing, and when your program does
unboxing, it can throw a NullPointerException. Finally, when your program
boxes primitive values, it can result in costly and unnecessary object creations.

CHAPTER 8 GENERAL PROGRAMMING224

Item 50: Avoid strings where other types are more appropriate

Strings are designed to represent text, and they do a fine job of it. Because strings
are so common and so well supported by the language, there is a natural tendency
to use strings for purposes other than those for which they were designed. This
item discusses a few things that you shouldn’t do with strings.

Strings are poor substitutes for other value types. When a piece of data
comes into a program from a file, from the network, or from keyboard input, it is
often in string form. There is a natural tendency to leave it that way, but this ten-
dency is justified only if the data really is textual in nature. If it’s numeric, it
should be translated into the appropriate numeric type, such as int, float, or
BigInteger. If it’s the answer to a yes-or-no question, it should be translated into
a boolean. More generally, if there’s an appropriate value type, whether primitive
or object reference, you should use it; if there isn’t, you should write one. While
this advice may seem obvious, it is often violated.

Strings are poor substitutes for enum types. As discussed in Item 30,
enums make far better enumerated type constants than strings.

Strings are poor substitutes for aggregate types. If an entity has multiple
components, it is usually a bad idea to represent it as a single string. For example,
here’s a line of code that comes from a real system—identifier names have been
changed to protect the guilty:

// Inappropriate use of string as aggregate type
String compoundKey = className + "#" + i.next();

This approach has many disadvantages. If the character used to separate fields
occurs in one of the fields, chaos may result. To access individual fields, you have
to parse the string, which is slow, tedious, and error-prone. You can’t provide
equals, toString, or compareTo methods but are forced to accept the behavior
that String provides. A better approach is simply to write a class to represent the
aggregate, often a private static member class (Item 22).

Strings are poor substitutes for capabilities. Occasionally, strings are used
to grant access to some functionality. For example, consider the design of a
thread-local variable facility. Such a facility provides variables for which each
thread has its own value. The Java libraries have had a thread-local variable facil-
ity since release 1.2, but prior to that, programmers had to roll their own. When
confronted with the task of designing such a facility many years ago, several peo-

ITEM 50: AVOID STRINGS WHERE OTHER TYPES ARE MORE APPROPRIATE 225

ple independently came up with the same design in which client-provided string
keys are used to identify each thread-local variable:

// Broken - inappropriate use of string as capability!
public class ThreadLocal {

private ThreadLocal() { } // Noninstantiable

// Sets the current thread's value for the named variable.
public static void set(String key, Object value);

// Returns the current thread's value for the named variable.
public static Object get(String key);

}

The problem with this approach is that the string keys represent a shared glo-
bal namespace for thread-local variables. In order for the approach to work, the
client-provided string keys have to be unique: if two clients independently decide
to use the same name for their thread-local variable, they unintentionally share a
single variable, which will generally cause both clients to fail. Also, the security is
poor. A malicious client could intentionally use the same string key as another cli-
ent to gain illicit access to the other client’s data.

This API can be fixed by replacing the string with an unforgeable key (some-
times called a capability):

public class ThreadLocal {
private ThreadLocal() { } // Noninstantiable

public static class Key { // (Capability)
Key() { }

}

// Generates a unique, unforgeable key
public static Key getKey() {

return new Key();
}

public static void set(Key key, Object value);
public static Object get(Key key);

}

While this solves both of the problems with the string-based API, you can do
much better. You don’t really need the static methods anymore. They can instead
become instance methods on the key, at which point the key is no longer a key for
a thread-local variable: it is a thread-local variable. At this point, the noninstantia-

CHAPTER 8 GENERAL PROGRAMMING226

ble top-level class isn’t doing anything for you anymore, so you might as well get
rid of it and rename the nested class to ThreadLocal:

public final class ThreadLocal {
public ThreadLocal() { }
public void set(Object value);
public Object get();

}

This API isn’t typesafe, because you have to cast the value from Object to its
actual type when you retrieve it from a thread-local variable. It is impossible to
make the original String-based API typesafe and difficult to make the Key-based
API typesafe, but it is a simple matter to make this API typesafe by generifying
the ThreadLocal class (Item 26):

public final class ThreadLocal<T> {
public ThreadLocal() { }
public void set(T value);
public T get();

}

This is, roughly speaking, the API that java.lang.ThreadLocal provides. In
addition to solving the problems with the string-based API, it is faster and more
elegant than either of the key-based APIs.

To summarize, avoid the natural tendency to represent objects as strings when
better data types exist or can be written. Used inappropriately, strings are more
cumbersome, less flexible, slower, and more error-prone than other types. Types
for which strings are commonly misused include primitive types, enums, and
aggregate types.

ITEM 51: BEWARE THE PERFORMANCE OF STRING CONCATENATION 227

Item 51: Beware the performance of string concatenation

The string concatenation operator (+) is a convenient way to combine a few strings
into one. It is fine for generating a single line of output or for constructing the string
representation of a small, fixed-size object, but it does not scale. Using the string
concatenation operator repeatedly to concatenate n strings requires time qua-
dratic in n. It is an unfortunate consequence of the fact that strings are immutable
(Item 15). When two strings are concatenated, the contents of both are copied.

For example, consider the following method that constructs a string represen-
tation of a billing statement by repeatedly concatenating a line for each item:

// Inappropriate use of string concatenation - Performs horribly!
public String statement() {

String result = "";
for (int i = 0; i < numItems(); i++)

result += lineForItem(i); // String concatenation
return result;

}

This method performs abysmally if the number of items is large. To achieve
acceptable performance, use a StringBuilder in place of a String to store the
statement under construction. (The StringBuilder class, added in release 1.5, is
an unsynchronized replacement for StringBuffer, which is now obsolete.)

public String statement() {
StringBuilder b = new StringBuilder(numItems() * LINE_WIDTH);
for (int i = 0; i < numItems(); i++)

b.append(lineForItem(i));
return b.toString();

}

The difference in performance is dramatic. If numItems returns 100 and
lineForItem returns a constant 80-character string, the second method is eighty-
five times faster than the first on my machine. Because the first method is
quadratic in the number of items and the second is linear, the performance
difference is even more dramatic for larger numbers of items. Note that the second
method preallocates a StringBuilder large enough to hold the result. Even if it is
detuned to use a default-sized StringBuilder, it is still fifty times faster.

The moral is simple: don’t use the string concatenation operator to combine
more than a few strings unless performance is irrelevant. Use StringBuilder’s
append method instead. Alternatively, use a character array, or process the strings
one at a time instead of combining them.

CHAPTER 8 GENERAL PROGRAMMING228

Item 52: Refer to objects by their interfaces

Item 40 contains the advice that you should use interfaces rather than classes as
parameter types. More generally, you should favor the use of interfaces rather than
classes to refer to objects. If appropriate interface types exist, then parame-
ters, return values, variables, and fields should all be declared using interface
types. The only time you really need to refer to an object’s class is when you’re
creating it with a constructor. To make this concrete, consider the case of Vector,
which is an implementation of the List interface. Get in the habit of typing this:

// Good - uses interface as type
List<Subscriber> subscribers = new Vector<Subscriber>();

rather than this:

// Bad - uses class as type!
Vector<Subscriber> subscribers = new Vector<Subscriber>();

If you get into the habit of using interfaces as types, your program will be
much more flexible. If you decide that you want to switch implementations, all
you have to do is change the class name in the constructor (or use a different static
factory). For example, the first declaration could be changed to read

List<Subscriber> subscribers = new ArrayList<Subscriber>();

and all of the surrounding code would continue to work. The surrounding code was
unaware of the old implementation type, so it would be oblivious to the change.

There is one caveat: if the original implementation offered some special func-
tionality not required by the general contract of the interface and the code
depended on that functionality, then it is critical that the new implementation pro-
vide the same functionality. For example, if the code surrounding the first declara-
tion depended on Vector’s synchronization policy, then it would be incorrect to
substitute ArrayList for Vector in the declaration. If you depend on any special
properties of an implementation, document these requirements where you declare
the variable.

So why would you want to change implementations? Because the new imple-
mentation offers better performance or because it offers desirable extra functional-
ity. A real-world example concerns the ThreadLocal class. Internally, this class
uses a package-private map field in Thread to associate per-thread values with

ITEM 52: REFER TO OBJECTS BY THEIR INTERFACES 229

ThreadLocal instances. In the 1.3 release, this field was initialized to a HashMap
instance. In the 1.4 release, a new, special-purpose Map implementation, called
IdentityHashMap, was added to the platform. By changing a single line of code
to initialize the field to an IdentityHashMap instead of a HashMap, the ThreadLo-
cal facility was made faster. The ThreadLocal implementation has since evolved
to use a highly optimized store that does not implement the Map interface, but this
does nothing to diminish the point.

Had the field been declared as a HashMap instead of a Map, there is no guaran-
tee that a single-line change would have been sufficient. If the client code had
used HashMap operations that were not present on the Map interface or passed the
map to a method that demanded a HashMap, the code would no longer compile if
the field were changed to an IdentityHashMap. Declaring the field with the inter-
face type “keeps you honest.”

It is entirely appropriate to refer to an object by a class rather than an
interface if no appropriate interface exists. For example, consider value
classes, such as String and BigInteger. Value classes are rarely written with
multiple implementations in mind. They are often final and rarely have corre-
sponding interfaces. It is perfectly appropriate to use such a value class as a
parameter, variable, field, or return type. More generally, if a concrete class has no
associated interface, then you have no choice but to refer to it by its class whether
or not it represents a value. The Random class falls into this category.

A second case in which there is no appropriate interface type is that of objects
belonging to a framework whose fundamental types are classes rather than
interfaces. If an object belongs to such a class-based framework, it is preferable to
refer to it by the relevant base class, which is typically abstract, rather than by its
implementation class. The java.util.TimerTask class falls into this category.

A final case in which there is no appropriate interface type is that of classes
that implement an interface but provide extra methods not found in the interface—
for example, LinkedHashMap. Such a class should be used to refer to its instances
only if the program relies on the extra methods. It should rarely be used as a
parameter type (Item 40).

These cases are not meant to be exhaustive but merely to convey the flavor of
situations where it is appropriate to refer to an object by its class. In practice, it
should be apparent whether a given object has an appropriate interface. If it does,
your program will be more flexible if you use the interface to refer to the object; if
not, just use the least specific class in the class hierarchy that provides the required
functionality.

CHAPTER 8 GENERAL PROGRAMMING230

Item 53: Prefer interfaces to reflection

The core reflection facility, java.lang.reflect, offers programmatic access to
information about loaded classes. Given a Class object, you can obtain Construc-
tor, Method, and Field instances representing the constructors, methods, and fields
of the class represented by the Class instance. These objects provide programmatic
access to the class’s member names, field types, method signatures, and so on.

Moreover, Constructor, Method, and Field instances let you manipulate
their underlying counterparts reflectively: you can construct instances, invoke
methods, and access fields of the underlying class by invoking methods on the
Constructor, Method, and Field instances. For example, Method.invoke lets
you invoke any method on any object of any class (subject to the usual security
constraints). Reflection allows one class to use another, even if the latter class did
not exist when the former was compiled. This power, however, comes at a price:

• You lose all the benefits of compile-time type checking, including exception
checking. If a program attempts to invoke a nonexistent or inaccessible method
reflectively, it will fail at runtime unless you’ve taken special precautions.

• The code required to perform reflective access is clumsy and verbose. It is
tedious to write and difficult to read.

• Performance suffers. Reflective method invocation is much slower than
normal method invocation. Exactly how much slower is hard to say, because
there are so many factors at work. On my machine, the speed difference can be
as small as a factor of two or as large as a factor of fifty.

The core reflection facility was originally designed for component-based
application builder tools. Such tools generally load classes on demand and use
reflection to find out what methods and constructors they support. The tools let
their users interactively construct applications that access these classes, but the
generated applications access the classes normally, not reflectively. Reflection is
used only at design time. As a rule, objects should not be accessed reflectively
in normal applications at runtime.

There are a few sophisticated applications that require reflection. Examples
include class browsers, object inspectors, code analysis tools, and interpretive
embedded systems. Reflection is also appropriate for use in remote procedure call
(RPC) systems to eliminate the need for stub compilers. If you have any doubts as
to whether your application falls into one of these categories, it probably doesn’t.

ITEM 53: PREFER INTERFACES TO REFLECTION 231

You can obtain many of the benefits of reflection while incurring few of
its costs by using it only in a very limited form. For many programs that must
use a class that is unavailable at compile time, there exists at compile time an
appropriate interface or superclass by which to refer to the class (Item 52). If this
is the case, you can create instances reflectively and access them normally via
their interface or superclass. If the appropriate constructor has no parameters,
then you don’t even need to use java.lang.reflect; the Class.newInstance
method provides the required functionality.

For example, here’s a program that creates a Set<String> instance whose
class is specified by the first command line argument. The program inserts the
remaining command line arguments into the set and prints it. Regardless of the
first argument, the program prints the remaining arguments with duplicates elimi-
nated. The order in which these arguments are printed, however, depends on the
class specified in the first argument. If you specify java.util.HashSet, they’re
printed in apparently random order; if you specify java.util.TreeSet, they’re
printed in alphabetical order, as the elements in a TreeSet are sorted:

// Reflective instantiation with interface access
public static void main(String[] args) {

// Translate the class name into a Class object
Class<?> cl = null;
try {

cl = Class.forName(args[0]);
 } catch(ClassNotFoundException e) {

System.err.println("Class not found.");
System.exit(1);

 }

// Instantiate the class
Set<String> s = null;
try {

s = (Set<String>) cl.newInstance();
} catch(IllegalAccessException e) {

System.err.println("Class not accessible.");
System.exit(1);

} catch(InstantiationException e) {
System.err.println("Class not instantiable.");
System.exit(1);

}

// Exercise the set
s.addAll(Arrays.asList(args).subList(1, args.length));
System.out.println(s);

}

CHAPTER 8 GENERAL PROGRAMMING232

While this program is just a toy, the technique it demonstrates is very power-
ful. The toy program could easily be turned into a generic set tester that validates
the specified Set implementation by aggressively manipulating one or more
instances and checking that they obey the Set contract. Similarly, it could be
turned into a generic set performance analysis tool. In fact, the technique is suffi-
ciently powerful to implement a full-blown service provider framework (Item 1).
Most of the time, this technique is all that you need in the way of reflection.

This example demonstrates two disadvantages of reflection. First, the example
can generate three runtime errors, all of which would have been compile-time
errors if reflective instantiation were not used. Second, it takes twenty lines of
tedious code to generate an instance of the class from its name, whereas a con-
structor invocation would fit neatly on a single line. These disadvantages are,
however, restricted to the part of the program that instantiates the object. Once
instantiated, it is indistinguishable from any other Set instance. In a real program,
the great bulk of the code is thus unaffected by this limited use of reflection.

If you try compiling the program, you’ll get the following error message:

Note: SetEx.java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.

This warning concerns the program’s use of generic types, but it does not indicate
a real problem. To learn the best way to suppress the warning, see Item 24.

Another tangential issue that deserves note is this program’s use of Sys-
tem.exit. It is rarely appropriate to call this method, which terminates the entire
VM. It is, however, appropriate for abnormal termination of a command line utility.

A legitimate, if rare, use of reflection is to manage a class’s dependencies on
other classes, methods, or fields that may be absent at runtime. This can be useful
if you are writing a package that must run against multiple versions of some other
package. The technique is to compile your package against the minimal environ-
ment required to support it, typically the oldest version, and to access any newer
classes or methods reflectively. To make this work, you have to take appropriate
action if a newer class or method that you are attempting to access does not exist
at runtime. Appropriate action might consist of using some alternate means to
accomplish the same goal or operating with reduced functionality.

In summary, reflection is a powerful facility that is required for certain sophis-
ticated system programming tasks, but it has many disadvantages. If you are writ-
ing a program that has to work with classes unknown at compile time, you should,
if at all possible, use reflection only to instantiate objects, and access the objects
using some interface or superclass that is known at compile time.

ITEM 54: USE NATIVE METHODS JUDICIOUSLY 233

Item 54: Use native methods judiciously

The Java Native Interface (JNI) allows Java applications to call native methods,
which are special methods written in native programming languages such as C or
C++. Native methods can perform arbitrary computation in native languages
before returning to the Java programming language.

Historically, native methods have had three main uses. They provided access
to platform-specific facilities such as registries and file locks. They provided
access to libraries of legacy code, which could in turn provide access to legacy
data. Finally, native methods were used to write performance-critical parts of
applications in native languages for improved performance.

It is legitimate to use native methods to access platform-specific facilities, but
as the Java platform matures, it provides more and more features previously found
only in host platforms. For example, java.util.prefs, added in release 1.4,
offers the functionality of a registry, and java.awt.SystemTray, added in release
1.6, offers access to the desktop system tray area. It is also legitimate to use native
methods to access legacy code.

It is rarely advisable to use native methods for improved performance. In
early releases (prior to 1.3), it was often necessary, but JVM implementations have
gotten much faster. For most tasks, it is now possible to obtain comparable perfor-
mance without resorting to native methods. For example, when java.math was
added to the platform in release 1.1, BigInteger was implemented atop a fast
multiprecision arithmetic library written in C. At the time, this was necessary for
adequate performance. In release 1.3, BigInteger was rewritten entirely in Java
and carefully tuned. Even then, the new version was faster than the original, and
VMs have become much faster in the intervening years.

The use of native methods has serious disadvantages. Because native lan-
guages are not safe (Item 39), applications using native methods are no longer
immune to memory corruption errors. Because native languages are platform
dependent, applications using native methods are far less portable. Applications
using native code are far more difficult to debug. There is a fixed cost associated
with going into and out of native code, so native methods can decrease perfor-
mance if they do only a small amount of work. Finally, native methods require
“glue code” that is difficult to read and tedious to write.

In summary, think twice before using native methods. Rarely, if ever, use them
for improved performance. If you must use native methods to access low-level
resources or legacy libraries, use as little native code as possible and test it thor-
oughly. A single bug in the native code can corrupt your entire application.

CHAPTER 8 GENERAL PROGRAMMING234

Item 55: Optimize judiciously

There are three aphorisms concerning optimization that everyone should know.
They are perhaps beginning to suffer from overexposure, but in case you aren’t yet
familiar with them, here they are:

More computing sins are committed in the name of efficiency (without neces-
sarily achieving it) than for any other single reason—including blind stupidity.

—William A. Wulf [Wulf72]

We should forget about small efficiencies, say about 97% of the time: prema-
ture optimization is the root of all evil.

—Donald E. Knuth [Knuth74]

We follow two rules in the matter of optimization:
Rule 1. Don’t do it.
Rule 2 (for experts only). Don’t do it yet—that is, not until you have a

perfectly clear and unoptimized solution.
—M. A. Jackson [Jackson75]

All of these aphorisms predate the Java programming language by two
decades. They tell a deep truth about optimization: it is easy to do more harm than
good, especially if you optimize prematurely. In the process, you may produce
software that is neither fast nor correct and cannot easily be fixed.

Don’t sacrifice sound architectural principles for performance. Strive to write
good programs rather than fast ones. If a good program is not fast enough, its
architecture will allow it to be optimized. Good programs embody the principle of
information hiding: where possible, they localize design decisions within individ-
ual modules, so individual decisions can be changed without affecting the remain-
der of the system (Item 13).

This does not mean that you can ignore performance concerns until your pro-
gram is complete. Implementation problems can be fixed by later optimization,
but pervasive architectural flaws that limit performance can be impossible to fix
without rewriting the system. Changing a fundamental facet of your design after
the fact can result in an ill-structured system that is difficult to maintain and
evolve. Therefore you must think about performance during the design process.

Strive to avoid design decisions that limit performance. The components
of a design that are most difficult to change after the fact are those specifying
interactions between modules and with the outside world. Chief among these

ITEM 55: OPTIMIZE JUDICIOUSLY 235

design components are APIs, wire-level protocols, and persistent data formats.
Not only are these design components difficult or impossible to change after the
fact, but all of them can place significant limitations on the performance that a
system can ever achieve.

Consider the performance consequences of your API design decisions.
Making a public type mutable may require a lot of needless defensive copying
(Item 39). Similarly, using inheritance in a public class where composition would
have been appropriate ties the class forever to its superclass, which can place arti-
ficial limits on the performance of the subclass (Item 16). As a final example,
using an implementation type rather than an interface in an API ties you to a spe-
cific implementation, even though faster implementations may be written in the
future (Item 52).

The effects of API design on performance are very real. Consider the getSize
method in the java.awt.Component class. The decision that this performance-
critical method was to return a Dimension instance, coupled with the decision that
Dimension instances are mutable, forces any implementation of this method to
allocate a new Dimension instance on every invocation. Even though allocating
small objects is inexpensive on a modern VM, allocating millions of objects
needlessly can do real harm to performance.

In this case, several alternatives existed. Ideally, Dimension should have been
immutable (Item 15); alternatively, the getSize method could have been replaced
by two methods returning the individual primitive components of a Dimension
object. In fact, two such methods were added to the Component API in the 1.2
release for performance reasons. Preexisting client code, however, still uses the
getSize method and still suffers the performance consequences of the original
API design decisions.

Luckily, it is generally the case that good API design is consistent with good
performance. It is a very bad idea to warp an API to achieve good perfor-
mance. The performance issue that caused you to warp the API may go away in a
future release of the platform or other underlying software, but the warped API
and the support headaches that come with it will be with you for life.

Once you’ve carefully designed your program and produced a clear, concise,
and well-structured implementation, then it may be time to consider optimization,
assuming you’re not already satisfied with the performance of the program.

Recall that Jackson’s two rules of optimization were “Don’t do it,” and “(for
experts only). Don’t do it yet.” He could have added one more: measure perfor-
mance before and after each attempted optimization. You may be surprised by
what you find. Often, attempted optimizations have no measurable effect on per-

CHAPTER 8 GENERAL PROGRAMMING236

formance; sometimes, they make it worse. The main reason is that it’s difficult to
guess where your program is spending its time. The part of the program that you
think is slow may not be at fault, in which case you’d be wasting your time trying
to optimize it. Common wisdom says that programs spend 80 percent of their time
in 20 percent of their code.

Profiling tools can help you decide where to focus your optimization efforts.
Such tools give you runtime information, such as roughly how much time each
method is consuming and how many times it is invoked. In addition to focusing
your tuning efforts, this can alert you to the need for algorithmic changes. If a qua-
dratic (or worse) algorithm lurks inside your program, no amount of tuning will
fix the problem. You must replace the algorithm with one that is more efficient.
The more code in the system, the more important it is to use a profiler. It’s like
looking for a needle in a haystack: the bigger the haystack, the more useful it is to
have a metal detector. The JDK comes with a simple profiler and modern IDEs
provide more sophisticated profiling tools.

The need to measure the effects of attempted optimization is even greater on
the Java platform than on more traditional platforms, because the Java program-
ming language does not have a strong performance model. The relative costs of
the various primitive operations are not well defined. The “semantic gap” between
what the programmer writes and what the CPU executes is far greater than in tra-
ditional statically compiled languages, which makes it very difficult to reliably
predict the performance consequences of any optimization. There are plenty of
performance myths floating around that turn out to be half-truths or outright lies.

Not only is Java’s performance model ill-defined, but it varies from JVM
implementation to JVM implementation, from release to release, and from proces-
sor to processor. If you will be running your program on multiple JVM implemen-
tations or multiple hardware platforms, it is important that you measure the effects
of your optimization on each. Occasionally you may be forced to make trade-offs
between performance on different JVM implementations or hardware platforms.

To summarize, do not strive to write fast programs—strive to write good ones;
speed will follow. Do think about performance issues while you’re designing sys-
tems and especially while you’re designing APIs, wire-level protocols, and persis-
tent data formats. When you’ve finished building the system, measure its
performance. If it’s fast enough, you’re done. If not, locate the source of the prob-
lems with the aid of a profiler, and go to work optimizing the relevant parts of the
system. The first step is to examine your choice of algorithms: no amount of low-
level optimization can make up for a poor choice of algorithm. Repeat this process
as necessary, measuring the performance after every change, until you’re satisfied.

ITEM 56: ADHERE TO GENERALLY ACCEPTED NAMING CONVENTIONS 237

Item 56: Adhere to generally accepted naming conventions

The Java platform has a well-established set of naming conventions, many of which
are contained in The Java Language Specification [JLS, 6.8]. Loosely speaking,
naming conventions fall into two categories: typographical and grammatical.

There are only a handful of typographical naming conventions, covering
packages, classes, interfaces, methods, fields, and type variables. You should
rarely violate them and never without a very good reason. If an API violates these
conventions, it may be difficult to use. If an implementation violates them, it may
be difficult to maintain. In both cases, violations have the potential to confuse and
irritate other programmers who work with the code and can cause faulty assump-
tions that lead to errors. The conventions are summarized in this item.

Package names should be hierarchical with the components separated by peri-
ods. Components should consist of lowercase alphabetic characters and, rarely,
digits. The name of any package that will be used outside your organization
should begin with your organization’s Internet domain name with the top-level
domain first, for example, edu.cmu, com.sun, gov.nsa. The standard libraries and
optional packages, whose names begin with java and javax, are exceptions to
this rule. Users must not create packages whose names begin with java or javax.
Detailed rules for converting Internet domain names to package name prefixes can
be found in The Java Language Specification [JLS, 7.7].

The remainder of a package name should consist of one or more components
describing the package. Components should be short, generally eight or fewer
characters. Meaningful abbreviations are encouraged, for example, util rather
than utilities. Acronyms are acceptable, for example, awt. Components should
generally consist of a single word or abbreviation.

Many packages have names with just one component in addition to the
Internet domain name. Additional components are appropriate for large facilities
whose size demands that they be broken up into an informal hierarchy. For
example, the javax.swing package has a rich hierarchy of packages with names
such as javax.swing.plaf.metal. Such packages are known as subpackages,
although there is no linguistic support for package hierarchies.

Class and interface names, including enum and annotation type names, should
consist of one or more words, with the first letter of each word capitalized, for
example, Timer or FutureTask. Abbreviations are to be avoided, except for acro-
nyms and certain common abbreviations like max and min. There is little consen-
sus as to whether acronyms should be uppercase or have only their first letter
capitalized. While uppercase may be more common, a strong argument can be

CHAPTER 8 GENERAL PROGRAMMING238

made in favor of capitalizing only the first letter: even if multiple acronyms occur
back-to-back, you can still tell where one word starts and the next word ends.
Which class name would you rather see, HTTPURL or HttpUrl?

Method and field names follow the same typographical conventions as class
and interface names, except that the first letter of a method or field name should
be lowercase, for example, remove or ensureCapacity. If an acronym occurs as
the first word of a method or field name, it should be lowercase.

The sole exception to the previous rule concerns “constant fields,” whose
names should consist of one or more uppercase words separated by the underscore
character, for example, VALUES or NEGATIVE_INFINITY. A constant field is a static
final field whose value is immutable. If a static final field has a primitive type or
an immutable reference type (Item 15), then it is a constant field. For example,
enum constants are constant fields. If a static final field has a mutable reference
type, it can still be a constant field if the referenced object is immutable. Note that
constant fields constitute the only recommended use of underscores.

Local variable names have similar typographical naming conventions to mem-
ber names, except that abbreviations are permitted, as are individual characters
and short sequences of characters whose meaning depends on the context in which
the local variable occurs, for example, i, xref, houseNumber.

Type parameter names usually consist of a single letter. Most commonly it is
one of these five: T for an arbitrary type, E for the element type of a collection, K
and V for the key and value types of a map, and X for an exception. A sequence of
arbitrary types can be T, U, V or T1, T2, T3.

For quick reference, the following table shows examples of typographical
conventions.

Identifier Type Examples

Package com.google.inject, org.joda.time.format

Class or Interface Timer, FutureTask, LinkedHashMap, HttpServlet

Method or Field remove, ensureCapacity, getCrc

Constant Field MIN_VALUE, NEGATIVE_INFINITY

Local Variable i, xref, houseNumber

Type Parameter T, E, K, V, X, T1, T2

ITEM 56: ADHERE TO GENERALLY ACCEPTED NAMING CONVENTIONS 239

Grammatical naming conventions are more flexible and more controversial
than typographical conventions. There are no grammatical naming conventions to
speak of for packages. Classes, including enum types, are generally named with a
singular noun or noun phrase, for example, Timer, BufferedWriter, or Chess-
Piece. Interfaces are named like classes, for example, Collection or Compara-
tor, or with an adjective ending in able or ible, for example, Runnable,
Iterable, or Accessible. Because annotation types have so many uses, no part
of speech predominates. Nouns, verbs, prepositions, and adjectives are all com-
mon, for example, BindingAnnotation, Inject, ImplementedBy, or Singleton.

Methods that perform some action are generally named with a verb or verb
phrase (including object), for example, append or drawImage. Methods that return
a boolean value usually have names that begin with the word is or, less com-
monly, has, followed by a noun, noun phrase, or any word or phrase that functions
as an adjective, for example, isDigit, isProbablePrime, isEmpty, isEnabled,
or hasSiblings.

Methods that return a non-boolean function or attribute of the object on
which they’re invoked are usually named with a noun, a noun phrase, or a verb
phrase beginning with the verb get, for example, size, hashCode, or getTime.
There is a vocal contingent that claims that only the third form (beginning with
get) is acceptable, but there is little basis for this claim. The first two forms usu-
ally lead to more readable code, for example:

if (car.speed() > 2 * SPEED_LIMIT)
generateAudibleAlert("Watch out for cops!");

The form beginning with get is mandatory if the class containing the method is a
Bean [JavaBeans], and it’s advisable if you’re considering turning the class into a
Bean at a later time. Also, there is strong precedent for this form if the class con-
tains a method to set the same attribute. In this case, the two methods should be
named getAttribute and setAttribute.

A few method names deserve special mention. Methods that convert the type
of an object, returning an independent object of a different type, are often called
toType, for example, toString, toArray. Methods that return a view (Item 5)
whose type differs from that of the receiving object are often called asType, for
example, asList. Methods that return a primitive with the same value as the
object on which they’re invoked are often called typeValue, for example,
intValue. Common names for static factories are valueOf, of, getInstance,
newInstance, getType, and newType (Item 1, page 10).

CHAPTER 8 GENERAL PROGRAMMING240

Grammatical conventions for field names are less well established and less
important than those for class, interface, and method names, as well-designed
APIs contain few if any exposed fields. Fields of type boolean are often named
like boolean accessor methods with the initial is omitted, for example, initial-
ized, composite. Fields of other types are usually named with nouns or noun
phrases, such as height, digits, or bodyStyle. Grammatical conventions for
local variables are similar to those for fields, but even weaker.

To summarize, internalize the standard naming conventions and learn to use
them as second nature. The typographical conventions are straightforward and
largely unambiguous; the grammatical conventions are more complex and looser.
To quote from The Java Language Specification [JLS, 6.8], “These conventions
should not be followed slavishly if long-held conventional usage dictates other-
wise.” Use common sense.

241

C H A P T E R 9
Exceptions

WHEN used to best advantage, exceptions can improve a program’s readability,
reliability, and maintainability. When used improperly, they can have the opposite
effect. This chapter provides guidelines for using exceptions effectively.

Item 57: Use exceptions only for exceptional conditions

Someday, if you are unlucky, you may stumble across a piece of code that looks
something like this:

// Horrible abuse of exceptions. Don't ever do this!
try {

int i = 0;
while(true)

range[i++].climb();
} catch(ArrayIndexOutOfBoundsException e) {
}

What does this code do? It’s not at all obvious from inspection, and that’s rea-
son enough not to use it (Item 55). It turns out to be a horribly ill-conceived idiom
for looping through the elements of an array. The infinite loop terminates by
throwing, catching, and ignoring an ArrayIndexOutOfBoundsException when it
attempts to access the first array element outside the bounds of the array. It’s sup-
posed to be equivalent to the standard idiom for looping through an array, which is
instantly recognizable to any Java programmer:

for (Mountain m : range)
m.climb();

So why would anyone use the exception-based loop in preference to the tried
and true? It’s a misguided attempt to improve performance based on the faulty rea-

CHAPTER 9 EXCEPTIONS242

soning that, since the VM checks the bounds of all array accesses, the normal loop
termination test—hidden by the compiler but still present in the for-each loop—is
redundant and should be avoided. There are three things wrong with this reasoning:

• Because exceptions are designed for exceptional circumstances, there is little
incentive for JVM implementors to make them as fast as explicit tests.

• Placing code inside a try-catch block inhibits certain optimizations that mod-
ern JVM implementations might otherwise perform.

• The standard idiom for looping through an array doesn’t necessarily result in
redundant checks. Modern JVM implementations optimize them away.

In fact, the exception-based idiom is far slower than the standard one on mod-
ern JVM implementations. On my machine, the exception-based idiom is more
than twice as slow as the standard one for arrays of one hundred elements.

Not only does the exception-based loop obfuscate the purpose of the code and
reduce its performance, but it’s not guaranteed to work! In the presence of an
unrelated bug, the loop can fail silently and mask the bug, greatly complicating the
debugging process. Suppose the computation in the body of the loop invokes a
method that performs an out-of-bounds access to some unrelated array. If a rea-
sonable loop idiom were used, the bug would generate an uncaught exception,
resulting in immediate thread termination with a full stack trace. If the misguided
exception-based loop were used, the bug-related exception would be caught and
misinterpreted as a normal loop termination.

The moral of this story is simple: exceptions are, as their name implies, to
be used only for exceptional conditions; they should never be used for ordi-
nary control flow. More generally, you should use standard, easily recognizable
idioms in preference to overly clever techniques that purport to offer better perfor-
mance. Even if the performance advantage is real, it may not remain in the face of
steadily improving platform implementations. The subtle bugs and maintenance
headaches that come from overly clever techniques, however, are sure to remain.

This principle also has implications for API design. A well-designed API
must not force its clients to use exceptions for ordinary control flow. A class
with a “state-dependent” method that can be invoked only under certain unpredict-
able conditions should generally have a separate “state-testing” method indicating
whether it is appropriate to invoke the state-dependent method. For example, the
Iterator interface has the state-dependent method next and the corresponding
state-testing method hasNext. This enables the standard idiom for iterating over a

ITEM 57: USE EXCEPTIONS ONLY FOR EXCEPTIONAL CONDITIONS 243

collection with a traditional for loop (as well as the for-each loop, where the has-
Next method is used internally):

for (Iterator<Foo> i = collection.iterator(); i.hasNext();) {
Foo foo = i.next();
...

}

If Iterator lacked the hasNext method, clients would be forced to do this instead:

// Do not use this hideous code for iteration over a collection!
try {

Iterator<Foo> i = collection.iterator();
while(true) {

Foo foo = i.next();
...

}
} catch (NoSuchElementException e) {
}

This should look very familiar after the array iteration example that began this item.
In addition to being wordy and misleading, the exception-based loop is likely to per-
form poorly and can mask bugs in unrelated parts of the system.

An alternative to providing a separate state-testing method is to have the state-
dependent method return a distinguished value such as null if it is invoked with
the object in an inappropriate state. This technique would not be appropriate for
Iterator, as null is a legitimate return value for the next method.

Here are some guidelines to help you choose between a state-testing method
and a distinguished return value. If an object is to be accessed concurrently without
external synchronization or is subject to externally induced state transitions, you
must use a distinguished return value, as the object’s state could change in the
interval between the invocation of a state-testing method and its state-dependent
method. Performance concerns may dictate that a distinguished return value be
used if a separate state-testing method would duplicate the work of the state-
dependent method. All other things being equal, a state-testing method is mildly
preferable to a distinguished return value. It offers slightly better readability, and
incorrect use may be easier to detect: if you forget to call a state-testing method,
the state-dependent method will throw an exception, making the bug obvious; if
you forget to check for a distinguished return value, the bug may be subtle.

In summary, exceptions are designed for use in exceptional conditions. Don’t
use them for ordinary control flow, and don’t write APIs that force others to do so.

CHAPTER 9 EXCEPTIONS244

Item 58: Use checked exceptions for recoverable conditions and
runtime exceptions for programming errors

The Java programming language provides three kinds of throwables: checked excep-
tions, runtime exceptions, and errors. There is some confusion among programmers
as to when it is appropriate to use each kind of throwable. While the decision is not
always clear-cut, there are some general rules that provide strong guidance.

The cardinal rule in deciding whether to use a checked or an unchecked
exception is this: use checked exceptions for conditions from which the caller
can reasonably be expected to recover. By throwing a checked exception, you
force the caller to handle the exception in a catch clause or to propagate it out-
ward. Each checked exception that a method is declared to throw is therefore a
potent indication to the API user that the associated condition is a possible out-
come of invoking the method.

By confronting the API user with a checked exception, the API designer pre-
sents a mandate to recover from the condition. The user can disregard the mandate
by catching the exception and ignoring it, but this is usually a bad idea (Item 65).

There are two kinds of unchecked throwables: runtime exceptions and errors.
They are identical in their behavior: both are throwables that needn’t, and gener-
ally shouldn’t, be caught. If a program throws an unchecked exception or an error,
it is generally the case that recovery is impossible and continued execution would
do more harm than good. If a program does not catch such a throwable, it will
cause the current thread to halt with an appropriate error message.

Use runtime exceptions to indicate programming errors. The great major-
ity of runtime exceptions indicate precondition violations. A precondition viola-
tion is simply a failure by the client of an API to adhere to the contract established
by the API specification. For example, the contract for array access specifies that
the array index must be between zero and the array length minus one. ArrayIn-
dexOutOfBoundsException indicates that this precondition was violated.

While the Java Language Specification does not require it, there is a strong
convention that errors are reserved for use by the JVM to indicate resource defi-
ciencies, invariant failures, or other conditions that make it impossible to continue
execution. Given the almost universal acceptance of this convention, it’s best not
to implement any new Error subclasses. Therefore, all of the unchecked throw-
ables you implement should subclass RuntimeException (directly or indi-
rectly).

It is possible to define a throwable that is not a subclass of Exception, Run-
timeException, or Error. The JLS does not address such throwables directly but

ITEM 58: USE CHECKED EXCEPTIONS FOR RECOVERABLE CONDITIONS 245

specifies implicitly that they are behaviorally identical to ordinary checked excep-
tions (which are subclasses of Exception but not RuntimeException). So when
should you use such a beast? In a word, never. It has no benefits over an ordinary
checked exception and would merely serve to confuse the user of your API.

To summarize, use checked exceptions for recoverable conditions and runtime
exceptions for programming errors. Of course, the situation is not always black
and white. For example, consider the case of resource exhaustion, which can be
caused by a programming error such as allocating an unreasonably large array or
by a genuine shortage of resources. If resource exhaustion is caused by a tempo-
rary shortage or by temporarily heightened demand, the condition may well be
recoverable. It is a matter of judgment on the part of the API designer whether a
given instance of resource exhaustion is likely to allow for recovery. If you believe
a condition is likely to allow for recovery, use a checked exception; if not, use a
runtime exception. If it isn’t clear whether recovery is possible, you’re probably
better off using an unchecked exception, for reasons discussed in Item 59.

API designers often forget that exceptions are full-fledged objects on which
arbitrary methods can be defined. The primary use of such methods is to provide
the code that catches the exception with additional information concerning the
condition that caused the exception to be thrown. In the absence of such methods,
programmers have been known to parse the string representation of an exception
to ferret out additional information. This is extremely bad practice (Item 10).
Classes seldom specify the details of their string representations, so string
representations can differ from implementation to implementation and release to
release. Therefore, code that parses the string representation of an exception is
likely to be nonportable and fragile.

Because checked exceptions generally indicate recoverable conditions, it’s
especially important for such exceptions to provide methods that furnish informa-
tion that could help the caller to recover. For example, suppose a checked excep-
tion is thrown when an attempt to make a purchase with a gift card fails because
the card doesn’t have enough money left on it. The exception should provide an
accessor method to query the amount of the shortfall, so the amount can be
relayed to the shopper.

CHAPTER 9 EXCEPTIONS246

Item 59: Avoid unnecessary use of checked exceptions

Checked exceptions are a wonderful feature of the Java programming language.
Unlike return codes, they force the programmer to deal with exceptional conditions,
greatly enhancing reliability. That said, overuse of checked exceptions can make an
API far less pleasant to use. If a method throws one or more checked exceptions, the
code that invokes the method must handle the exceptions in one or more catch
blocks, or it must declare that it throws the exceptions and let them propagate out-
ward. Either way, it places a nontrivial burden on the programmer.

The burden is justified if the exceptional condition cannot be prevented by
proper use of the API and the programmer using the API can take some useful
action once confronted with the exception. Unless both of these conditions hold,
an unchecked exception is more appropriate. As a litmus test, ask yourself how the
programmer will handle the exception. Is this the best that can be done?

} catch(TheCheckedException e) {
throw new AssertionError(); // Can't happen!

}

How about this?

} catch(TheCheckedException e) {
e.printStackTrace(); // Oh well, we lose.
System.exit(1);

}

If the programmer using the API can do no better, an unchecked exception
would be more appropriate. One example of an exception that fails this test is
CloneNotSupportedException. It is thrown by Object.clone, which should be
invoked only on objects that implement Cloneable (Item 11). In practice, the
catch block almost always has the character of an assertion failure. The checked
nature of the exception provides no benefit to the programmer, but it requires
effort and complicates programs.

The additional burden on the programmer caused by a checked exception is
substantially higher if it is the sole checked exception thrown by a method. If there
are others, the method must already appear in a try block, and this exception
merely requires another catch block. If a method throws a single checked excep-
tion, this exception alone is responsible for the fact that the method must appear in
a try block. Under these circumstances, it pays to ask yourself whether there isn’t
some way to avoid the checked exception.

ITEM 59: AVOID UNNECESSARY USE OF CHECKED EXCEPTIONS 247

One technique for turning a checked exception into an unchecked exception is
to break the method that throws the exception into two methods, the first of which
returns a boolean that indicates whether the exception would be thrown. This API
refactoring transforms the calling sequence from this:

// Invocation with checked exception
try {

obj.action(args);
} catch(TheCheckedException e) {

// Handle exceptional condition
...

}

to this:

// Invocation with state-testing method and unchecked exception
if (obj.actionPermitted(args)) {

obj.action(args);
} else {

// Handle exceptional condition
...

}

This refactoring is not always appropriate, but where it is appropriate, it can
make an API more pleasant to use. While the latter calling sequence is no prettier
than the former, the resulting API is more flexible. In cases where the programmer
knows the call will succeed or is content to let the thread terminate if the call fails,
the refactoring also allows this simple calling sequence:

obj.action(args);

If you suspect that the simple calling sequence will be the norm, then this API
refactoring may be appropriate. The API resulting from this refactoring is essen-
tially identical to the state-testing method API in Item 57 and the same caveats
apply: if an object is to be accessed concurrently without external synchronization
or it is subject to externally induced state transitions, this refactoring is inappropri-
ate, as the object’s state may change between the invocations of actionPermit-
ted and action. If a separate actionPermitted method would, of necessity,
duplicate the work of the action method, the refactoring may be ruled out by per-
formance concerns.

CHAPTER 9 EXCEPTIONS248

Item 60: Favor the use of standard exceptions

One of the attributes that most strongly distinguishes expert programmers from less
experienced ones is that experts strive for and usually achieve a high degree of code
reuse. Exceptions are no exception to the general rule that code reuse is good. The
Java platform libraries provide a basic set of unchecked exceptions that cover a large
fraction of the exception-throwing needs of most APIs. In this item, we’ll discuss
these commonly reused exceptions.

Reusing preexisting exceptions has several benefits. Chief among these, it
makes your API easier to learn and use because it matches established conven-
tions with which programmers are already familiar. A close second is that pro-
grams using your API are easier to read because they aren’t cluttered with
unfamiliar exceptions. Last (and least), fewer exception classes mean a smaller
memory footprint and less time spent loading classes.

The most commonly reused exception is IllegalArgumentException. This
is generally the exception to throw when the caller passes in an argument whose
value is inappropriate. For example, this would be the exception to throw if the
caller passed a negative number in a parameter representing the number of times
some action was to be repeated.

Another commonly reused exception is IllegalStateException. This is
generally the exception to throw if the invocation is illegal because of the state of
the receiving object. For example, this would be the exception to throw if the
caller attempted to use some object before it had been properly initialized.

Arguably, all erroneous method invocations boil down to an illegal argument
or illegal state, but other exceptions are standardly used for certain kinds of illegal
arguments and states. If a caller passes null in some parameter for which null val-
ues are prohibited, convention dictates that NullPointerException be thrown
rather than IllegalArgumentException. Similarly, if a caller passes an out-of-
range value in a parameter representing an index into a sequence, IndexOutOf-
BoundsException should be thrown rather than IllegalArgumentException.

Another general-purpose exception worth knowing about is ConcurrentMod-
ificationException. This exception should be thrown if an object that was
designed for use by a single thread or with external synchronization detects that it
is being (or has been) concurrently modified.

A last general-purpose exception worthy of note is UnsupportedOperation-
Exception. This is the exception to throw if an object does not support an
attempted operation. Its use is rare compared to the other exceptions discussed in
this item, as most objects support all the methods they implement. This exception

ITEM 60: FAVOR THE USE OF STANDARD EXCEPTIONS 249

is used by implementations that fail to implement one or more optional operations
defined by an interface. For example, an append-only List implementation would
throw this exception if someone tried to delete an element from the list.

This table summarizes the most commonly reused exceptions:

While these are by far the most commonly reused exceptions in the Java plat-
form libraries, other exceptions may be reused where circumstances warrant. For
example, it would be appropriate to reuse ArithmeticException and Number-
FormatException if you were implementing arithmetic objects such as complex
numbers or rational numbers. If an exception fits your needs, go ahead and use it,
but only if the conditions under which you would throw it are consistent with the
exception’s documentation. Reuse must be based on semantics, not just on name.
Also, feel free to subclass an existing exception if you want to add a bit more fail-
ure-capture information (Item 63).

Finally, be aware that choosing which exception to reuse is not always an
exact science, as the occasions for use in the table above are not mutually
exclusive. Consider, for example, the case of an object representing a deck of
cards. Suppose there were a method to deal a hand from the deck that took as an
argument the size of the hand. Suppose the caller passed in this parameter a value
that was larger than the number of cards remaining in the deck. This could be
construed as an IllegalArgumentException (the handSize parameter value is
too high) or an IllegalStateException (the deck object contains too few cards
for the request). In this case the IllegalArgumentException feels right, but there
are no hard-and-fast rules.

Exception Occasion for Use

IllegalArgumentException Non-null parameter value is inappropriate

IllegalStateException Object state is inappropriate for method
invocation

NullPointerException Parameter value is null where prohibited

IndexOutOfBoundsException Index parameter value is out of range

ConcurrentModificationException Concurrent modification of an object has
been detected where it is prohibited

UnsupportedOperationException Object does not support method

CHAPTER 9 EXCEPTIONS250

Item 61: Throw exceptions appropriate to the abstraction

It is disconcerting when a method throws an exception that has no apparent connec-
tion to the task that it performs. This often happens when a method propagates an
exception thrown by a lower-level abstraction. Not only is this disconcerting, but it
pollutes the API of the higher layer with implementation details. If the implementa-
tion of the higher layer changes in a subsequent release, the exceptions that it throws
will change too, potentially breaking existing client programs.

To avoid this problem, higher layers should catch lower-level exceptions
and, in their place, throw exceptions that can be explained in terms of the
higher-level abstraction. This idiom is known as exception translation:

// Exception Translation
try {

// Use lower-level abstraction to do our bidding
...

} catch(LowerLevelException e) {
throw new HigherLevelException(...);

}

Here is an example of exception translation taken from the
AbstractSequentialList class, which is a skeletal implementation (Item 18) of
the List interface. In this example, exception translation is mandated by the
specification of the get method in the List<E> interface:

/**
* Returns the element at the specified position in this list.
* @throws IndexOutOfBoundsException if the index is out of range
* ({@code index < 0 || index >= size()}).
*/
public E get(int index) {

ListIterator<E> i = listIterator(index);
try {

return i.next();
} catch(NoSuchElementException e) {

throw new IndexOutOfBoundsException("Index: " + index);
}

}

A special form of exception translation called exception chaining is appropri-
ate in cases where the lower-level exception might be helpful to someone debug-
ging the problem that caused the higher-level exception. The lower-level

ITEM 61: THROW EXCEPTIONS APPROPRIATE TO THE ABSTRACTION 251

exception (the cause) is passed to the higher-level exception, which provides an
accessor method (Throwable.getCause) to retrieve the lower-level exception:

// Exception Chaining
try {

... // Use lower-level abstraction to do our bidding
} catch (LowerLevelException cause) {

throw new HigherLevelException(cause);
}

The higher-level exception’s constructor passes the cause to a chaining-aware
superclass constructor, so it is ultimately passed to one of Throwable’s chaining-
aware constructors, such as Throwable(Throwable):

// Exception with chaining-aware constructor
class HigherLevelException extends Exception {

HigherLevelException(Throwable cause) {
super(cause);

}
}

Most standard exceptions have chaining-aware constructors. For exceptions that
don’t, you can set the cause using Throwable’s initCause method. Not only does
exception chaining let you access the cause programmatically (with getCause), but
it integrates the cause’s stack trace into that of the higher-level exception.

While exception translation is superior to mindless propagation of excep-
tions from lower layers, it should not be overused. Where possible, the best
way to deal with exceptions from lower layers is to avoid them, by ensuring that
lower-level methods succeed. Sometimes you can do this by checking the validity
of the higher-level method’s parameters before passing them on to lower layers.

If it is impossible to prevent exceptions from lower layers, the next best thing
is to have the higher layer silently work around these exceptions, insulating the
caller of the higher-level method from lower-level problems. Under these circum-
stances, it may be appropriate to log the exception using some appropriate logging
facility such as java.util.logging. This allows an administrator to investigate
the problem, while insulating the client code and the end user from it.

In summary, if it isn’t feasible to prevent or to handle exceptions from lower
layers, use exception translation, unless the lower-level method happens to guar-
antee that all of its exceptions are appropriate to the higher level. Chaining pro-
vides the best of both worlds: it allows you to throw an appropriate higher-level
exception, while capturing the underlying cause for failure analysis (Item 63).

CHAPTER 9 EXCEPTIONS252

Item 62: Document all exceptions thrown by each method

A description of the exceptions thrown by a method is an important part of the doc-
umentation required to use the method properly. Therefore, it is critically important
that you take the time to carefully document all of the exceptions thrown by each
method.

Always declare checked exceptions individually, and document precisely
the conditions under which each one is thrown using the Javadoc @throws

tag. Don’t take the shortcut of declaring that a method throws some superclass of
multiple exception classes that it can throw. As an extreme example, never declare
that a method “throws Exception” or, worse yet, “throws Throwable.” In addi-
tion to denying any guidance to the method’s user concerning the exceptions that
it is capable of throwing, such a declaration greatly hinders the use of the method,
as it effectively obscures any other exception that may be thrown in the same con-
text.

While the language does not require programmers to declare the unchecked
exceptions that a method is capable of throwing, it is wise to document them as
carefully as the checked exceptions. Unchecked exceptions generally represent
programming errors (Item 58), and familiarizing programmers with all of the
errors they can make helps them avoid making these errors. A well-documented
list of the unchecked exceptions that a method can throw effectively describes the
preconditions for its successful execution. It is essential that each method’s docu-
mentation describe its preconditions, and documenting its unchecked exceptions
is the best way to satisfy this requirement.

It is particularly important that methods in interfaces document the unchecked
exceptions they may throw. This documentation forms a part of the interface’s
general contract and enables common behavior among multiple implementations
of the interface.

Use the Javadoc @throws tag to document each unchecked exception that
a method can throw, but do not use the throws keyword to include unchecked
exceptions in the method declaration. It is important that the programmers
using your API be aware of which exceptions are checked and which are
unchecked, as their responsibilities differ in these two cases. The documentation
generated by the Javadoc @throws tag in the absence of the method header gener-
ated by the throws declaration provides a strong visual cue to help the program-
mer distinguish checked exceptions from unchecked.

ITEM 62: DOCUMENT ALL EXCEPTIONS THROWN BY EACH METHOD 253

It should be noted that documenting all of the unchecked exceptions that each
method can throw is an ideal, not always achievable in the real world. When a
class undergoes revision, it is not a violation of source or binary compatibility if
an exported method is modified to throw additional unchecked exceptions.
Suppose a class invokes a method from another, independently written class. The
authors of the former class may carefully document all of the unchecked
exceptions that each method throws, but if the latter class is revised to throw
additional unchecked exceptions, it is quite likely that the former class (which has
not undergone revision) will propagate the new unchecked exceptions even
though it does not declare them.

If an exception is thrown by many methods in a class for the same reason,
it is acceptable to document the exception in the class’s documentation com-
ment rather than documenting it individually for each method. A common exam-
ple is NullPointerException. It is fine for a class’s documentation comment to
say, “All methods in this class throw a NullPointerException if a null object ref-
erence is passed in any parameter,” or words to that effect.

In summary, document every exception that can be thrown by each method
that you write. This is true for unchecked as well as checked exceptions, and for
abstract as well as concrete methods. Provide individual throws clauses for each
checked exception and do not provide throws clauses for unchecked exceptions.
If you fail to document the exceptions that your methods can throw, it will be dif-
ficult or impossible for others to make effective use of your classes and interfaces.

CHAPTER 9 EXCEPTIONS254

Item 63: Include failure-capture information in detail messages

When a program fails due to an uncaught exception, the system automatically prints
out the exception’s stack trace. The stack trace contains the exception’s string repre-
sentation, the result of invoking its toString method. This typically consists of the
exception’s class name followed by its detail message. Frequently this is the only
information that programmers or field service personnel will have when investigat-
ing a software failure. If the failure is not easily reproducible, it may be difficult or
impossible to get any more information. Therefore, it is critically important that the
exception’s toString method return as much information as possible concerning
the cause of the failure. In other words, the detail message of an exception should
capture the failure for subsequent analysis.

To capture the failure, the detail message of an exception should contain
the values of all parameters and fields that “contributed to the exception.”
For example, the detail message of an IndexOutOfBoundsException should con-
tain the lower bound, the upper bound, and the index value that failed to lie
between the bounds. This information tells a lot about the failure. Any or all of the
three values could be wrong. The actual index could be one less than the lower
bound or equal to the upper bound (a “fencepost error”), or it could be a wild
value, far too low or high. The lower bound could be greater than the upper bound
(a serious internal invariant failure). Each of these situations points to a different
problem, and it greatly aids in the diagnosis if the programmer knows what sort of
error to look for.

While it is critical to include all of the pertinent “hard data” in the detail mes-
sage of an exception, it is generally unimportant to include a lot of prose. The
stack trace is intended to be analyzed in conjunction with the source files and gen-
erally contains the exact file and line number from which the exception was
thrown, as well as the files and line numbers of all other method invocations on
the stack. Lengthy prose descriptions of the failure are generally superfluous; the
information can be gleaned by reading the source code.

The detail message of an exception should not be confused with a user-level
error message, which must be intelligible to end users. Unlike a user-level error
message, it is primarily for the benefit of programmers or field service personnel
for use when analyzing a failure. Therefore, information content is far more
important than intelligibility.

One way to ensure that exceptions contain adequate failure-capture informa-
tion in their detail messages is to require this information in their constructors
instead of a string detail message. The detail message can then be generated auto-

ITEM 63: INCLUDE FAILURE-CAPTURE INFORMATION IN DETAIL MESSAGES 255

matically to include the information. For example, instead of a String construc-
tor, IndexOutOfBoundsException could have had a constructor that looks like
this:

/**
* Construct an IndexOutOfBoundsException.
*
* @param lowerBound the lowest legal index value.
* @param upperBound the highest legal index value plus one.
* @param index the actual index value.
*/
public IndexOutOfBoundsException(int lowerBound, int upperBound,

int index) {
// Generate a detail message that captures the failure
super("Lower bound: " + lowerBound +

", Upper bound: " + upperBound +
", Index: " + index);

// Save failure information for programmatic access
this.lowerBound = lowerBound;
this.upperBound = upperBound;
this.index = index;

}

Unfortunately, the Java platform libraries do not make heavy use of this
idiom, but it is highly recommended. It makes it easy for the programmer throw-
ing an exception to capture the failure. In fact, it makes it hard for the programmer
not to capture the failure! In effect, the idiom centralizes the code to generate a
high-quality detail message for an exception in the exception class itself, rather
than requiring each user of the class to generate the detail message redundantly.

As suggested in Item 58, it may be appropriate for an exception to provide
accessor methods for its failure-capture information (lowerBound, upperBound,
and index in the above example). It is more important to provide such accessor
methods on checked exceptions than on unchecked exceptions, because the fail-
ure-capture information could be useful in recovering from the failure. It is rare
(although not inconceivable) that a programmer might want programmatic access
to the details of an unchecked exception. Even for unchecked exceptions, how-
ever, it seems advisable to provide these accessors on general principle (Item 10,
page 53).

CHAPTER 9 EXCEPTIONS256

Item 64: Strive for failure atomicity

After an object throws an exception, it is generally desirable that the object still be in
a well-defined, usable state, even if the failure occurred in the midst of performing
an operation. This is especially true for checked exceptions, from which the caller is
expected to recover. Generally speaking, a failed method invocation should leave
the object in the state that it was in prior to the invocation. A method with this
property is said to be failure atomic.

There are several ways to achieve this effect. The simplest is to design immu-
table objects (Item 15). If an object is immutable, failure atomicity is free. If an
operation fails, it may prevent a new object from getting created, but it will never
leave an existing object in an inconsistent state, because the state of each object is
consistent when it is created and can’t be modified thereafter.

For methods that operate on mutable objects, the most common way to
achieve failure atomicity is to check parameters for validity before performing the
operation (Item 38). This causes any exception to get thrown before object modifi-
cation commences. For example, consider the Stack.pop method in Item 6:

public Object pop() {
if (size == 0)

throw new EmptyStackException();
Object result = elements[--size];
elements[size] = null; // Eliminate obsolete reference
return result;

}

If the initial size check were eliminated, the method would still throw an
exception when it attempted to pop an element from an empty stack. It would,
however, leave the size field in an inconsistent (negative) state, causing any future
method invocations on the object to fail. Additionally, the exception thrown by the
pop method would be inappropriate to the abstraction (Item 61).

A closely related approach to achieving failure atomicity is to order the com-
putation so that any part that may fail takes place before any part that modifies the
object. This approach is a natural extension of the previous one when arguments
cannot be checked without performing a part of the computation. For example,
consider the case of TreeMap, whose elements are sorted according to some order-
ing. In order to add an element to a TreeMap, the element must be of a type that
can be compared using the TreeMap’s ordering. Attempting to add an incorrectly
typed element will naturally fail with a ClassCastException as a result of
searching for the element in the tree, before the tree has been modified in any way.

ITEM 64: STRIVE FOR FAILURE ATOMICITY 257

A third and far less common approach to achieving failure atomicity is to
write recovery code that intercepts a failure that occurs in the midst of an opera-
tion and causes the object to roll back its state to the point before the operation
began. This approach is used mainly for durable (disk-based) data structures.

A final approach to achieving failure atomicity is to perform the operation on
a temporary copy of the object and to replace the contents of the object with the
temporary copy once the operation is complete. This approach occurs naturally
when the computation can be performed more quickly once the data has been
stored in a temporary data structure. For example, Collections.sort dumps its
input list into an array prior to sorting to reduce the cost of accessing elements in
the inner loop of the sort. This is done for performance, but as an added benefit, it
ensures that the input list will be untouched if the sort fails.

While failure atomicity is generally desirable, it is not always achievable. For
example, if two threads attempt to modify the same object concurrently without
proper synchronization, the object may be left in an inconsistent state. It would
therefore be wrong to assume that an object was still usable after catching a Con-
currentModificationException. As a rule, errors (as opposed to exceptions)
are unrecoverable, and methods need not even attempt to preserve failure atomic-
ity when throwing errors.

Even where failure atomicity is possible, it is not always desirable. For some
operations, it would significantly increase the cost or complexity. That said, it is
often both free and easy to achieve failure atomicity once you’re aware of the
issue.

As a rule, any generated exception that is part of a method’s specification
should leave the object in the same state it was in prior to the method invocation.
Where this rule is violated, the API documentation should clearly indicate what
state the object will be left in. Unfortunately, plenty of existing API documenta-
tion fails to live up to this ideal.

CHAPTER 9 EXCEPTIONS258

Item 65: Don’t ignore exceptions

While this advice may seem obvious, it is violated often enough that it bears repeat-
ing. When the designers of an API declare a method to throw an exception, they are
trying to tell you something. Don’t ignore it! It is easy to ignore exceptions by sur-
rounding a method invocation with a try statement with an empty catch block:

// Empty catch block ignores exception - Highly suspect!
try {

...
} catch (SomeException e) {
}

An empty catch block defeats the purpose of exceptions, which is to force
you to handle exceptional conditions. Ignoring an exception is analogous to ignor-
ing a fire alarm—and turning it off so no one else gets a chance to see if there’s a
real fire. You may get away with it, or the results may be disastrous. Whenever
you see an empty catch block, alarm bells should go off in your head. At the very
least, the catch block should contain a comment explaining why it is appro-
priate to ignore the exception.

An example of the sort of situation where it might be appropriate to ignore an
exception is when closing a FileInputStream. You haven’t changed the state of
the file, so there’s no need to perform any recovery action, and you’ve already
read the information that you need from the file, so there’s no reason to abort the
operation in progress. Even in this case, it is wise to log the exception, so that you
can investigate the matter if these exceptions happen often.

The advice in this item applies equally to checked and unchecked exceptions.
Whether an exception represents a predictable exceptional condition or a pro-
gramming error, ignoring it with an empty catch block will result in a program
that continues silently in the face of error. The program might then fail at an arbi-
trary time in the future, at a point in the code that bears no apparent relation to the
source of the problem. Properly handling an exception can avert failure entirely.
Merely letting an exception propagate outward can at least cause the program to
fail swiftly, preserving information to aid in debugging the failure.

259

C H A P T E R 10
Concurrency

THREADS allow multiple activities to proceed concurrently. Concurrent pro-
gramming is harder than single-threaded programming, because more things can go
wrong, and failures can be hard to reproduce. But you can’t avoid concurrency. It is
inherent in much of what we do, and a requirement if you are to obtain good perfor-
mance from multicore processors, which are now commonplace. This chapter con-
tains advice to help you write clear, correct, well-documented concurrent programs.

Item 66: Synchronize access to shared mutable data

The synchronized keyword ensures that only a single thread can execute a method
or block at one time. Many programmers think of synchronization solely as a
means of mutual exclusion, to prevent an object from being observed in an incon-
sistent state while it’s being modified by another thread. In this view, an object is
created in a consistent state (Item 15) and locked by the methods that access it.
These methods observe the state and optionally cause a state transition, transform-
ing the object from one consistent state to another. Proper use of synchronization
guarantees that no method will ever observe the object in an inconsistent state.

This view is correct, but it’s only half the story. Without synchronization, one
thread’s changes might not be visible to other threads. Not only does synchroniza-
tion prevent a thread from observing an object in an inconsistent state, but it
ensures that each thread entering a synchronized method or block sees the effects
of all previous modifications that were guarded by the same lock.

The language specification guarantees that reading or writing a variable is
atomic unless the variable is of type long or double [JLS, 17.4.7]. In other words,
reading a variable other than a long or double is guaranteed to return a value that
was stored into that variable by some thread, even if multiple threads modify the
variable concurrently and without synchronization.

CHAPTER 10 CONCURRENCY260

You may hear it said that to improve performance, you should avoid synchro-
nization when reading or writing atomic data. This advice is dangerously wrong.
While the language specification guarantees that a thread will not see an arbitrary
value when reading a field, it does not guarantee that a value written by one thread
will be visible to another. Synchronization is required for reliable communica-
tion between threads as well as for mutual exclusion. This is due to a part of the
language specification known as the memory model, which specifies when and
how changes made by one thread become visible to others [JLS, 17, Goetz06 16].

The consequences of failing to synchronize access to shared mutable data can
be dire even if the data is atomically readable and writable. Consider the task of
stopping one thread from another. The libraries provide the Thread.stop method,
but this method was deprecated long ago because it is inherently unsafe—its use
can result in data corruption. Do not use Thread.stop. A recommended way to
stop one thread from another is to have the first thread poll a boolean field that is
initially false but can be set to true by the second thread to indicate that the first
thread is to stop itself. Because reading and writing a boolean field is atomic,
some programmers dispense with synchronization when accessing the field:

// Broken! - How long would you expect this program to run?
public class StopThread {

private static boolean stopRequested;

public static void main(String[] args)
throws InterruptedException {

Thread backgroundThread = new Thread(new Runnable() {
public void run() {

int i = 0;
while (!stopRequested)

i++;
}

});
backgroundThread.start();

TimeUnit.SECONDS.sleep(1);
stopRequested = true;

}
}

You might expect this program to run for about a second, after which the main
thread sets stopRequested to true, causing the background thread’s loop to ter-
minate. On my machine, however, the program never terminates: the background
thread loops forever!

ITEM 66: SYNCHRONIZE ACCESS TO SHARED MUTABLE DATA 261

The problem is that in the absence of synchronization, there is no guarantee as
to when, if ever, the background thread will see the change in the value of stop-
Requested that was made by the main thread. In the absence of synchronization,
it’s quite acceptable for the virtual machine to transform this code:

while (!done)
i++;

into this code:

if (!done)
while (true)

i++;

This optimization is known as hoisting, and it is precisely what the HotSpot server
VM does. The result is a liveness failure: the program fails to make progress. One
way to fix the problem is to synchronize access to the stopRequested field. This
program terminates in about one second, as expected:

// Properly synchronized cooperative thread termination
public class StopThread {

private static boolean stopRequested;
private static synchronized void requestStop() {

stopRequested = true;
}
private static synchronized boolean stopRequested() {

return stopRequested;
}

public static void main(String[] args)
throws InterruptedException {

Thread backgroundThread = new Thread(new Runnable() {
public void run() {

int i = 0;
while (!stopRequested())

i++;
}

});
backgroundThread.start();

TimeUnit.SECONDS.sleep(1);
requestStop();

}
}

CHAPTER 10 CONCURRENCY262

Note that both the write method (requestStop) and the read method (stop-
Requested) are synchronized. It is not sufficient to synchronize only the write
method! In fact, synchronization has no effect unless both read and write
operations are synchronized.

The actions of the synchronized methods in StopThread would be atomic
even without synchronization. In other words, the synchronization on these meth-
ods is used solely for its communication effects, not for mutual exclusion. While
the cost of synchronizing on each iteration of the loop is small, there is a correct
alternative that is less verbose and whose performance is likely to be better. The
locking in the second version of StopThread can be omitted if stopRequested is
declared volatile. While the volatile modifier performs no mutual exclusion, it
guarantees that any thread that reads the field will see the most recently written
value:

// Cooperative thread termination with a volatile field
public class StopThread {

private static volatile boolean stopRequested;

public static void main(String[] args)
throws InterruptedException {

Thread backgroundThread = new Thread(new Runnable() {
public void run() {

int i = 0;
while (!stopRequested)

i++;
}

});
backgroundThread.start();

TimeUnit.SECONDS.sleep(1);
stopRequested = true;

}
}

You do have to be careful when using volatile. Consider the following
method, which is supposed to generate serial numbers:

// Broken - requires synchronization!
private static volatile int nextSerialNumber = 0;

public static int generateSerialNumber() {
return nextSerialNumber++;

}

ITEM 66: SYNCHRONIZE ACCESS TO SHARED MUTABLE DATA 263

The intent of the method is to guarantee that every invocation returns a differ-
ent value (so long as there are no more than 232 invocations). The method’s state
consists of a single atomically accessible field, nextSerialNumber, and all possi-
ble values of this field are legal. Therefore, no synchronization is necessary to pro-
tect its invariants. Still, the method won’t work properly without synchronization.

The problem is that the increment operator (++) is not atomic. It performs two
operations on the nextSerialNumber field: first it reads the value, then it writes
back a new value, equal to the old value plus one. If a second thread reads the field
between the time a thread reads the old value and writes back a new one, the sec-
ond thread will see the same value as the first and return the same serial number.
This is a safety failure: the program computes the wrong results.

One way to fix the generateSerialNumber method is to add the synchro-
nized modifier to its declaration. This ensures that multiple invocations won’t be
interleaved, and that each invocation will see the effects of all previous invoca-
tions. Once you’ve done that, you can and should remove the volatile modifier
from nextSerialNumber. To bulletproof the method, use long instead of int, or
throw an exception if nextSerialNumber is about to wrap.

Better still, follow the advice in Item 47 and use the class AtomicLong, which
is part of java.util.concurrent.atomic. It does exactly what you want and is
likely to perform better than the synchronized version of generateSerialNumber:

private static final AtomicLong nextSerialNum = new AtomicLong();

public static long generateSerialNumber() {
return nextSerialNum.getAndIncrement();

}

The best way to avoid the problems discussed in this item is not to share muta-
ble data. Either share immutable data (Item 15), or don’t share at all. In other
words, confine mutable data to a single thread. If you adopt this policy, it is
important to document it, so that it is maintained as your program evolves. It is
also important to have a deep understanding of the frameworks and libraries
you’re using, as they may introduce threads that you are unaware of.

It is acceptable for one thread to modify a data object for a while and then to
share it with other threads, synchronizing only the act of sharing the object refer-
ence. Other threads can then read the object without further synchronization, so
long as it isn’t modified again. Such objects are said to be effectively immutable
[Goetz06 3.5.4]. Transferring such an object reference from one thread to others is
called safe publication [Goetz06 3.5.3]. There are many ways to safely publish an
object reference: you can store it in a static field as part of class initialization; you

CHAPTER 10 CONCURRENCY264

can store it in a volatile field, a final field, or a field that is accessed with normal
locking; or you can put it into a concurrent collection (Item 69).

In summary, when multiple threads share mutable data, each thread that
reads or writes the data must perform synchronization. Without synchroniza-
tion, there is no guarantee that one thread’s changes will be visible to another. The
penalties for failing to synchronize shared mutable data are liveness and safety
failures. These failures are among the most difficult to debug. They can be inter-
mittent and timing-dependent, and program behavior can vary radically from one
VM to another. If you need only inter-thread communication, and not mutual
exclusion, the volatile modifier is an acceptable form of synchronization, but it
can be tricky to use correctly.

ITEM 67: AVOID EXCESSIVE SYNCHRONIZATION 265

Item 67: Avoid excessive synchronization

Item 66 warns of the dangers of insufficient synchronization. This item concerns
the opposite problem. Depending on the situation, excessive synchronization can
cause reduced performance, deadlock, or even nondeterministic behavior.

To avoid liveness and safety failures, never cede control to the client
within a synchronized method or block. In other words, inside a synchronized
region, do not invoke a method that is designed to be overridden, or one provided
by a client in the form of a function object (Item 21). From the perspective of the
class with the synchronized region, such methods are alien. The class has no
knowledge of what the method does and has no control over it. Depending on
what an alien method does, calling it from a synchronized region can cause excep-
tions, deadlocks, or data corruption.

To make this concrete, consider the following class, which implements an
observable set wrapper. It allows clients to subscribe to notifications when ele-
ments are added to the set. This is the Observer pattern [Gamma95, p. 293]. For
brevity’s sake, the class does not provide notifications when elements are removed
from the set, but it would be a simple matter to provide them. This class is imple-
mented atop the reusable ForwardingSet from Item 16 (page 84):

// Broken - invokes alien method from synchronized block!
public class ObservableSet<E> extends ForwardingSet<E> {

public ObservableSet(Set<E> set) { super(set); }

private final List<SetObserver<E>> observers =
new ArrayList<SetObserver<E>>();

public void addObserver(SetObserver<E> observer) {
synchronized(observers) {

observers.add(observer);
}

}
public boolean removeObserver(SetObserver<E> observer) {

synchronized(observers) {
return observers.remove(observer);

}
 }

private void notifyElementAdded(E element) {
synchronized(observers) {

for (SetObserver<E> observer : observers)
observer.added(this, element);

}
}

CHAPTER 10 CONCURRENCY266

@Override public boolean add(E element) {
boolean added = super.add(element);
if (added)

notifyElementAdded(element);
return added;

}

@Override public boolean addAll(Collection<? extends E> c) {
boolean result = false;
for (E element : c)

result |= add(element); // calls notifyElementAdded
return result;

}
}

Observers subscribe to notifications by invoking the addObserver method
and unsubscribe by invoking the removeObserver method. In both cases, an
instance of this callback interface is passed to the method:

public interface SetObserver<E> {
// Invoked when an element is added to the observable set
void added(ObservableSet<E> set, E element);

}

On cursory inspection, ObservableSet appears to work. For example, the fol-
lowing program prints the numbers from 0 through 99:

public static void main(String[] args) {
ObservableSet<Integer> set =

new ObservableSet<Integer>(new HashSet<Integer>());

set.addObserver(new SetObserver<Integer>() {
public void added(ObservableSet<Integer> s, Integer e) {

System.out.println(e);
}

});

for (int i = 0; i < 100; i++)
set.add(i);

}

Now let’s try something a bit fancier. Suppose we replace the addObserver
call with one that passes an observer that prints the Integer value that was added
to the set and removes itself if the value is 23:

ITEM 67: AVOID EXCESSIVE SYNCHRONIZATION 267

set.addObserver(new SetObserver<Integer>() {
public void added(ObservableSet<Integer> s, Integer e) {

System.out.println(e);
if (e == 23) s.removeObserver(this);

}
});

You might expect the program to print the numbers 0 through 23, after which the
observer would unsubscribe and the program complete its work silently. What
actually happens is that it prints the numbers 0 through 23, and then throws a Con-
currentModificationException. The problem is that notifyElementAdded is
in the process of iterating over the observers list when it invokes the observer’s
added method. The added method calls the observable set’s removeObserver
method, which in turn calls observers.remove. Now we are in trouble. We are
trying to remove an element from a list in the midst of iterating over it, which is
illegal. The iteration in the notifyElementAdded method is in a synchronized
block to prevent concurrent modification, but it doesn’t prevent the iterating thread
itself from calling back into the observable set and modifying its observers list.

Now let’s try something odd: let’s write an observer that attempts to unsub-
scribe, but instead of calling removeObserver directly, it engages the services of
another thread to do the deed. This observer uses an executor service (Item 68):

// Observer that uses a background thread needlessly
set.addObserver(new SetObserver<Integer>() {

public void added(final ObservableSet<Integer> s, Integer e) {
System.out.println(e);
if (e == 23) {

ExecutorService executor =
Executors.newSingleThreadExecutor();

final SetObserver<Integer> observer = this;
try {

executor.submit(new Runnable() {
public void run() {

s.removeObserver(observer);
}

}).get();
} catch (ExecutionException ex) {

throw new AssertionError(ex.getCause());
} catch (InterruptedException ex) {

throw new AssertionError(ex.getCause());
} finally {

executor.shutdown();
}

}
}

});

CHAPTER 10 CONCURRENCY268

This time we don’t get an exception; we get a deadlock. The background thread
calls s.removeObserver, which attempts to lock observers, but it can’t acquire
the lock, because the main thread already has the lock. All the while, the main
thread is waiting for the background thread to finish removing the observer, which
explains the deadlock.

This example is contrived because there is no reason for the observer to use a
background thread, but the problem is real. Invoking alien methods from synchro-
nized regions has caused many deadlocks in real systems, such as GUI toolkits.

In both of the previous examples (the exception and the deadlock) we were
lucky. The resource that was guarded by the synchronized region (observers)
was in a consistent state when the alien method (added) was invoked. Suppose
you were to invoke an alien method from within a synchronized region while the
invariant protected by the synchronized region was temporarily invalid. Because
locks in the Java programming language are reentrant, such calls won’t deadlock.
As in the first example, which resulted in an exception, the calling thread already
holds the lock, so the thread will succeed when it tries to reacquire the lock, even
though another conceptually unrelated operation is in progress on the data
guarded by the lock. The consequences of such a failure can be catastrophic. In
essence, the lock has failed to do its job. Reentrant locks simplify the construction
of multithreaded object-oriented programs, but they can turn liveness failures into
safety failures.

Luckily, it is usually not too hard to fix this sort of problem by moving alien
method invocations out of synchronized blocks. For the notifyElementAdded
method, this involves taking a “snapshot” of the observers list that can then be
safely traversed without a lock. With this change, both of the previous examples
run without exception or deadlock:

// Alien method moved outside of synchronized block - open calls
private void notifyElementAdded(E element) {

List<SetObserver<E>> snapshot = null;
synchronized(observers) {

snapshot = new ArrayList<SetObserver<E>>(observers);
}
for (SetObserver<E> observer : snapshot)

observer.added(this, element);
}

In fact, there’s a better way to move the alien method invocations out of the
synchronized block. Since release 1.5, the Java libraries have provided a concur-
rent collection (Item 69) known as CopyOnWriteArrayList, which is tailor-made

ITEM 67: AVOID EXCESSIVE SYNCHRONIZATION 269

for this purpose. It is a variant of ArrayList in which all write operations are
implemented by making a fresh copy of the entire underlying array. Because the
internal array is never modified, iteration requires no locking and is very fast. For
most uses, the performance of CopyOnWriteArrayList would be atrocious, but
it’s perfect for observer lists, which are rarely modified and often traversed.

The add and addAll methods of ObservableSet need not be changed if the
list is modified to use CopyOnWriteArrayList. Here is how the remainder of the
class looks. Notice that there is no explicit synchronization whatsoever:

// Thread-safe observable set with CopyOnWriteArrayList
private final List<SetObserver<E>> observers =

new CopyOnWriteArrayList<SetObserver<E>>();

public void addObserver(SetObserver<E> observer) {
observers.add(observer);

}
public boolean removeObserver(SetObserver<E> observer) {

return observers.remove(observer);
}
private void notifyElementAdded(E element) {

for (SetObserver<E> observer : observers)
observer.added(this, element);

}

An alien method invoked outside of a synchronized region is known as an
open call [Lea00 2.4.1.3]. Besides preventing failures, open calls can greatly
increase concurrency. An alien method might run for an arbitrarily long period. If
the alien method were invoked from a synchronized region, other threads would
be denied access to the protected resource unnecessarily.

As a rule, you should do as little work as possible inside synchronized
regions. Obtain the lock, examine the shared data, transform it as necessary, and
drop the lock. If you must perform some time-consuming activity, find a way to
move the activity out of the synchronized region without violating the guidelines
in Item 66.

The first part of this item was about correctness. Now let’s take a brief look at
performance. While the cost of synchronization has plummeted since the early
days of Java, it is more important than ever not to oversynchronize. In a multicore
world, the real cost of excessive synchronization is not the CPU time spent obtain-
ing locks; it is the lost opportunities for parallelism and the delays imposed by the
need to ensure that every core has a consistent view of memory. Another hidden

CHAPTER 10 CONCURRENCY270

cost of oversynchronization is that it can limit the VM’s ability to optimize code
execution.

You should make a mutable class thread-safe (Item 70) if it is intended for
concurrent use and you can achieve significantly higher concurrency by synchro-
nizing internally than you could by locking the entire object externally. Otherwise,
don’t synchronize internally. Let the client synchronize externally where it is
appropriate. In the early days of the Java platform, many classes violated these
guidelines. For example, StringBuffer instances are almost always used by a
single thread, yet they perform internal synchronization. It is for this reason that
StringBuffer was essentially replaced by StringBuilder, which is an unsyn-
chronized StringBuffer, in release 1.5. When in doubt, do not synchronize your
class, but document that it is not thread-safe (Item 70).

If you do synchronize your class internally, you can use various techniques to
achieve high concurrency, such as lock splitting, lock striping, and nonblocking
concurrency control. These techniques are beyond the scope of this book, but they
are discussed elsewhere [Goetz06, Lea00].

If a method modifies a static field, you must synchronize access to this field,
even if the method is typically used only by a single thread. It is not possible for
clients to perform external synchronization on such a method because there can be
no guarantee that unrelated clients will do likewise. The generateSerialNumber
method on page 263 exemplifies this situation.

In summary, to avoid deadlock and data corruption, never call an alien method
from within a synchronized region. More generally, try to limit the amount of
work that you do from within synchronized regions. When you are designing a
mutable class, think about whether it should do its own synchronization. In the
modern multicore era, it is more important than ever not to synchronize exces-
sively. Synchronize your class internally only if there is a good reason to do so,
and document your decision clearly (Item 70).

ITEM 68: PREFER EXECUTORS AND TASKS TO THREADS 271

Item 68: Prefer executors and tasks to threads

The first edition of this book contained code for a simple work queue [Bloch01,
Item 50]. This class allowed clients to enqueue work items for asynchronous pro-
cessing by a background thread. When the work queue was no longer needed, the
client could invoke a method to ask the background thread to terminate itself
gracefully after completing any work that was already on the queue. The imple-
mentation was little more than a toy, but even so, it required a full page of subtle,
delicate code, of the sort that is prone to safety and liveness failures if you don’t
get it just right. Luckily, there is no reason to write this sort of code anymore.

In release 1.5, java.util.concurrent was added to the Java platform. This
package contains an Executor Framework, which is a flexible interface-based task
execution facility. Creating a work queue that is better in every way than the one
in the first edition of this book requires but a single line of code:

ExecutorService executor = Executors.newSingleThreadExecutor();

Here is how to submit a runnable for execution:

executor.execute(runnable);

And here is how to tell the executor to terminate gracefully (if you fail to do this, it
is likely that your VM will not exit):

executor.shutdown();

You can do many more things with an executor service. For example, you can
wait for a particular task to complete (as in the “background thread SetObserver”
in Item 67, page 267), you can wait for any or all of a collection of tasks to com-
plete (using the invokeAny or invokeAll methods), you can wait for the executor
service’s graceful termination to complete (using the awaitTermination

method), you can retrieve the results of tasks one by one as they complete (using
an ExecutorCompletionService), and so on.

If you want more than one thread to process requests from the queue, simply
call a different static factory that creates a different kind of executor service called
a thread pool. You can create a thread pool with a fixed or variable number of
threads. The java.util.concurrent.Executors class contains static factories
that provide most of the executors you’ll ever need. If, however, you want some-

CHAPTER 10 CONCURRENCY272

thing out of the ordinary, you can use the ThreadPoolExecutor class directly.
This class lets you control nearly every aspect of a thread pool’s operation.

Choosing the executor service for a particular application can be tricky. If
you’re writing a small program, or a lightly loaded server, using Executors.new-
CachedThreadPool is generally a good choice, as it demands no configuration
and generally “does the right thing.” But a cached thread pool is not a good choice
for a heavily loaded production server! In a cached thread pool, submitted tasks
are not queued but immediately handed off to a thread for execution. If no threads
are available, a new one is created. If a server is so heavily loaded that all of its
CPUs are fully utilized, and more tasks arrive, more threads will be created, which
will only make matters worse. Therefore, in a heavily loaded production server,
you are much better off using Executors.newFixedThreadPool, which gives you
a pool with a fixed number of threads, or using the ThreadPoolExecutor class
directly, for maximum control.

Not only should you refrain from writing your own work queues, but you
should generally refrain from working directly with threads. The key abstraction
is no longer Thread, which served as both the unit of work and the mechanism for
executing it. Now the unit of work and mechanism are separate. The key abstrac-
tion is the unit of work, which is called a task. There are two kinds of tasks: Run-
nable and its close cousin, Callable (which is like Runnable, except that it
returns a value). The general mechanism for executing tasks is the executor ser-
vice. If you think in terms of tasks and let an executor service execute them for
you, you gain great flexibility in terms of selecting appropriate execution policies.
In essence, the Executor Framework does for execution what the Collections
Framework did for aggregation.

The Executor Framework also has a replacement for java.util.Timer,
which is ScheduledThreadPoolExecutor. While it is easier to use a timer, a
scheduled thread pool executor is much more flexible. A timer uses only a single
thread for task execution, which can hurt timing accuracy in the presence of long-
running tasks. If a timer’s sole thread throws an uncaught exception, the timer
ceases to operate. A scheduled thread pool executor supports multiple threads and
recovers gracefully from tasks that throw unchecked exceptions.

A complete treatment of the Executor Framework is beyond the scope of this
book, but the interested reader is directed to Java Concurrency in Practice
[Goetz06].

ITEM 69: PREFER CONCURRENCY UTILITIES TO WAIT AND NOTIFY 273

Item 69: Prefer concurrency utilities to wait and notify

The first edition of this book devoted an item to the correct use of wait and
notify (Bloch01, Item 50). Its advice is still valid and is summarized at end of this
item, but this advice is far less important than it once was. This is because there is
far less reason to use wait and notify. As of release 1.5, the Java platform pro-
vides higher-level concurrency utilities that do the sorts of things you formerly had
to hand-code atop wait and notify. Given the difficulty of using wait and
notify correctly, you should use the higher-level concurrency utilities instead.

The higher-level utilities in java.util.concurrent fall into three categories:
the Executor Framework, which was covered only briefly in Item 68; concurrent
collections; and synchronizers. Concurrent collections and synchronizers are cov-
ered briefly in this item.

The concurrent collections provide high-performance concurrent implementa-
tions of standard collection interfaces such as List, Queue, and Map. To provide
high concurrency, these implementations manage their own synchronization inter-
nally (Item 67). Therefore, it is impossible to exclude concurrent activity from
a concurrent collection; locking it will have no effect but to slow the program.

This means that clients can’t atomically compose method invocations on con-
current collections. Some of the collection interfaces have therefore been extended
with state-dependent modify operations, which combine several primitives into a
single atomic operation. For example, ConcurrentMap extends Map and adds sev-
eral methods, including putIfAbsent(key, value), which inserts a mapping for
a key if none was present and returns the previous value associated with the key,
or null if there was none. This makes it easy to implement thread-safe canonical-
izing maps. For example, this method simulates the behavior of String.intern:

// Concurrent canonicalizing map atop ConcurrentMap - not optimal
private static final ConcurrentMap<String, String> map =

new ConcurrentHashMap<String, String>();

public static String intern(String s) {
String previousValue = map.putIfAbsent(s, s);
return previousValue == null ? s : previousValue;

}

In fact, you can do even better. ConcurrentHashMap is optimized for retrieval
operations, such as get. Therefore, it is worth invoking get initially and calling
putIfAbsent only if get indicates that it is necessary:

CHAPTER 10 CONCURRENCY274

// Concurrent canonicalizing map atop ConcurrentMap - faster!
public static String intern(String s) {

String result = map.get(s);
if (result == null) {

result = map.putIfAbsent(s, s);
if (result == null)

result = s;
}
return result;

}

Besides offering excellent concurrency, ConcurrentHashMap is very fast. On my
machine the optimized intern method above is over six times faster than
String.intern (but keep in mind that String.intern must use some sort of weak
reference to keep from leaking memory over time). Unless you have a compelling reason
to do otherwise, use ConcurrentHashMap in preference to Collections.synchro-
nizedMap or Hashtable. Simply replacing old-style synchronized maps with concurrent
maps can dramatically increase the performance of concurrent applications. More gener-
ally, use concurrent collections in preference to externally synchronized collections.

Some of the collection interfaces have been extended with blocking opera-
tions, which wait (or block) until they can be successfully performed. For exam-
ple, BlockingQueue extends Queue and adds several methods, including take,
which removes and returns the head element from the queue, waiting if the queue
is empty. This allows blocking queues to be used for work queues (also known as
producer-consumer queues), to which one or more producer threads enqueue
work items and from which one or more consumer threads dequeue and process
items as they become available. As you’d expect, most ExecutorService imple-
mentations, including ThreadPoolExecutor, use a BlockingQueue (Item 68).

Synchronizers are objects that enable threads to wait for one another, allowing
them to coordinate their activities. The most commonly used synchronizers are
CountDownLatch and Semaphore. Less commonly used are CyclicBarrier and
Exchanger.

Countdown latches are single-use barriers that allow one or more threads to
wait for one or more other threads to do something. The sole constructor for
CountDownLatch takes an int that is the number of times the countDown method
must be invoked on the latch before all waiting threads are allowed to proceed.

It is surprisingly easy to build useful things atop this simple primitive. For
example, suppose you want to build a simple framework for timing the concurrent
execution of an action. This framework consists of a single method that takes an
executor to execute the action, a concurrency level representing the number of

ITEM 69: PREFER CONCURRENCY UTILITIES TO WAIT AND NOTIFY 275

actions to be executed concurrently, and a runnable representing the action. All of
the worker threads ready themselves to run the action before the timer thread
starts the clock (this is necessary to get an accurate timing). When the last worker
thread is ready to run the action, the timer thread “fires the starting gun,” allowing
the worker threads to perform the action. As soon as the last worker thread fin-
ishes performing the action, the timer thread stops the clock. Implementing this
logic directly on top of wait and notify would be messy to say the least, but it is
surprisingly straightforward on top of CountDownLatch:

// Simple framework for timing concurrent execution
public static long time(Executor executor, int concurrency,

final Runnable action) throws InterruptedException {
final CountDownLatch ready = new CountDownLatch(concurrency);
final CountDownLatch start = new CountDownLatch(1);
final CountDownLatch done = new CountDownLatch(concurrency);
for (int i = 0; i < concurrency; i++) {

executor.execute(new Runnable() {
public void run() {

ready.countDown(); // Tell timer we're ready
try {

start.await(); // Wait till peers are ready
action.run();

} catch (InterruptedException e) {
Thread.currentThread().interrupt();

} finally {
done.countDown(); // Tell timer we're done

}
}

});
}
ready.await(); // Wait for all workers to be ready
long startNanos = System.nanoTime();
start.countDown(); // And they're off!
done.await(); // Wait for all workers to finish
return System.nanoTime() - startNanos;

}

Note that the method uses three countdown latches. The first, ready, is used
by worker threads to tell the timer thread when they’re ready. The worker threads
then wait on the second latch, which is start. When the last worker thread
invokes ready.countDown, the timer thread records the start time and invokes
start.countDown, allowing all of the worker threads to proceed. Then the timer
thread waits on the third latch, done, until the last of the worker threads finishes
running the action and calls done.countDown. As soon as this happens, the timer
thread awakens and records the end time.

CHAPTER 10 CONCURRENCY276

A few more details bear noting. The executor that is passed to the time
method must allow for the creation of at least as many threads as the given concur-
rency level, or the test will never complete. This is known as a thread starvation
deadlock [Goetz06 8.1.1]. If a worker thread catches an InterruptedException,
it reasserts the interrupt using the idiom Thread.currentThread().interrupt()
and returns from its run method. This allows the executor to deal with the inter-
rupt as it sees fit, which is as it should be. Finally, note that System.nanoTime is
used to time the activity rather than System.currentTimeMillis. For interval
timing, always use System.nanoTime in preference to System.currentTime-
Millis. System.nanoTime is both more accurate and more precise, and it is not
affected by adjustments to the system’s real-time clock.

This item only scratches the surface of the concurrency utilities. For example,
the three countdown latches in the previous example can be replaced by a single
cyclic barrier. The resulting code is even more concise, but it is more difficult to
understand. For more information, see Java Concurrency in Practice [Goetz06].

While you should always use the concurrency utilities in preference to wait
and notify, you might have to maintain legacy code that uses wait and notify.
The wait method is used to make a thread wait for some condition. It must be
invoked inside a synchronized region that locks the object on which it is invoked.
Here is the standard idiom for using the wait method:

// The standard idiom for using the wait method
synchronized (obj) {

while (<condition does not hold>)
obj.wait(); // (Releases lock, and reacquires on wakeup)

... // Perform action appropriate to condition
}

Always use the wait loop idiom to invoke the wait method; never invoke it
outside of a loop. The loop serves to test the condition before and after waiting.

Testing the condition before waiting and skipping the wait if the condition
already holds are necessary to ensure liveness. If the condition already holds and
the notify (or notifyAll) method has already been invoked before a thread
waits, there is no guarantee that the thread will ever wake from the wait.

Testing the condition after waiting and waiting again if the condition does not
hold are necessary to ensure safety. If the thread proceeds with the action when
the condition does not hold, it can destroy the invariant guarded by the lock. There
are several reasons a thread might wake up when the condition does not hold:

ITEM 69: PREFER CONCURRENCY UTILITIES TO WAIT AND NOTIFY 277

• Another thread could have obtained the lock and changed the guarded state be-
tween the time a thread invoked notify and the time the waiting thread woke.

• Another thread could have invoked notify accidentally or maliciously when
the condition did not hold. Classes expose themselves to this sort of mischief
by waiting on publicly accessible objects. Any wait contained in a synchro-
nized method of a publicly accessible object is susceptible to this problem.

• The notifying thread could be overly “generous” in waking waiting threads.
For example, the notifying thread might invoke notifyAll even if only some
of the waiting threads have their condition satisfied.

• The waiting thread could (rarely) wake up in the absence of a notify. This is
known as a spurious wakeup [Posix, 11.4.3.6.1; JavaSE6].

A related issue is whether you should use notify or notifyAll to wake wait-
ing threads. (Recall that notify wakes a single waiting thread, assuming such a
thread exists, and notifyAll wakes all waiting threads.) It is often said that you
should always use notifyAll. This is reasonable, conservative advice. It will
always yield correct results because it guarantees that you’ll wake the threads that
need to be awakened. You may wake some other threads, too, but this won’t affect
the correctness of your program. These threads will check the condition for which
they’re waiting and, finding it false, will continue waiting.

As an optimization, you may choose to invoke notify instead of notifyAll
if all threads that could be in the wait-set are waiting for the same condition and
only one thread at a time can benefit from the condition becoming true.

Even if these conditions appear true, there may be cause to use notifyAll in
place of notify. Just as placing the wait invocation in a loop protects against
accidental or malicious notifications on a publicly accessible object, using noti-
fyAll in place of notify protects against accidental or malicious waits by an
unrelated thread. Such waits could otherwise “swallow” a critical notification,
leaving its intended recipient waiting indefinitely.

In summary, using wait and notify directly is like programming in “concur-
rency assembly language,” as compared to the higher-level language provided by
java.util.concurrent. There is seldom, if ever, a reason to use wait and
notify in new code. If you maintain code that uses wait and notify, make sure
that it always invokes wait from within a while loop using the standard idiom.
The notifyAll method should generally be used in preference to notify. If
notify is used, great care must be taken to ensure liveness.

CHAPTER 10 CONCURRENCY278

Item 70: Document thread safety

How a class behaves when its instances or static methods are subjected to concur-
rent use is an important part of the contract the class makes with its clients. If you
don’t document this facet of a class’s behavior, programmers who use the class
will be forced to make assumptions. If those assumptions are wrong, the resulting
program may perform insufficient synchronization (Item 66) or excessive syn-
chronization (Item 67). In either case, serious errors can result.

You might hear it said that you can tell if a method is thread-safe by looking
for the synchronized modifier in its documentation. This is wrong on several
counts. In normal operation, Javadoc does not include the synchronized modifier
in its output, and with good reason. The presence of the synchronized modifier
in a method declaration is an implementation detail, not a part of its exported
API. It does not reliably indicate that a method is thread-safe.

Moreover, the claim that the presence of the synchronized modifier is suffi-
cient to document thread safety embodies the misconception that thread safety is
an all-or-nothing property. In fact, there are several levels of thread safety. To
enable safe concurrent use, a class must clearly document what level of
thread safety it supports.

The following list summarizes levels of thread safety. It is not exhaustive but
covers the common cases:

• immutable—Instances of this class appear constant. No external synchroniza-
tion is necessary. Examples include String, Long, and BigInteger (Item 15).

• unconditionally thread-safe—Instances of this class are mutable, but the
class has sufficient internal synchronization that its instances can be used
concurrently without the need for any external synchronization. Examples
include Random and ConcurrentHashMap.

• conditionally thread-safe—Like unconditionally thread-safe, except that
some methods require external synchronization for safe concurrent use.
Examples include the collections returned by the Collections.synchronized
wrappers, whose iterators require external synchronization.

• not thread-safe—Instances of this class are mutable. To use them concurrent-
ly, clients must surround each method invocation (or invocation sequence)
with external synchronization of the clients’ choosing. Examples include the

ITEM 70: DOCUMENT THREAD SAFETY 279

general-purpose collection implementations, such as ArrayList and HashMap.

• thread-hostile—This class is not safe for concurrent use even if all method in-
vocations are surrounded by external synchronization. Thread hostility usually
results from modifying static data without synchronization. No one writes a
thread-hostile class on purpose; such classes result from the failure to consider
concurrency. Luckily, there are very few thread-hostile classes or methods in
the Java libraries. The System.runFinalizersOnExit method is thread-hos-
tile and has been deprecated.

These categories (apart from thread-hostile) correspond roughly to the thread
safety annotations in Java Concurrency in Practice, which are Immutable,
ThreadSafe, and NotThreadSafe [Goetz06, Appendix A]. The unconditionally
and conditionally thread-safe categories in the above taxonomy are both covered
under the ThreadSafe annotation.

Documenting a conditionally thread-safe class requires care. You must indi-
cate which invocation sequences require external synchronization, and which lock
(or in rare cases, which locks) must be acquired to execute these sequences. Typi-
cally it is the lock on the instance itself, but there are exceptions. If an object rep-
resents a view on some other object, the client generally must synchronize on the
backing object, so as to prevent its direct modification. For example, the docu-
mentation for Collections.synchronizedMap says this:

It is imperative that the user manually synchronize on the returned map when
iterating over any of its collection views:

Map<K, V> m = Collections.synchronizedMap(new HashMap<K, V>());
...

Set<K> s = m.keySet(); // Needn't be in synchronized block
...

synchronized(m) { // Synchronizing on m, not s!
for (K key : s)

key.f();
}

Failure to follow this advice may result in non-deterministic behavior.

The description of a class’s thread safety generally belongs in its documenta-
tion comment, but methods with special thread safety properties should describe
these properties in their own documentation comments. It is not necessary to doc-
ument the immutability of enum types. Unless it is obvious from the return type,

CHAPTER 10 CONCURRENCY280

static factories must document the thread safety of the returned object, as demon-
strated by Collections.synchronizedMap (above).

When a class commits to using a publicly accessible lock, it enables clients to
execute a sequence of method invocations atomically, but this flexibility comes at
a price. It is incompatible with high-performance internal concurrency control, of
the sort used by concurrent collections such as ConcurrentHashMap and Concur-
rentLinkedQueue. Also, a client can mount a denial-of-service attack by holding
the publicly accessible lock for a prolonged period. This can be done accidentally
or intentionally.

To prevent this denial-of-service attack, you can use a private lock object
instead of using synchronized methods (which imply a publicly accessible lock):

// Private lock object idiom - thwarts denial-of-service attack
private final Object lock = new Object();

public void foo() {
synchronized(lock) {

...
}

}

Because the private lock object is inaccessible to clients of the class, it is impossi-
ble for them to interfere with the object’s synchronization. In effect, we are apply-
ing the advice of Item 13 by encapsulating the lock object within the object it
synchronizes.

Note that the lock field is declared final. This prevents you from inadvert-
ently changing its contents, which could result in catastrophic unsynchronized
access to the containing object (Item 66). We are applying the advice of Item 15,
by minimizing the mutability of the lock field.

To reiterate, the private lock object idiom can be used only on unconditionally
thread-safe classes. Conditionally thread-safe classes can’t use this idiom because
they must document which lock their clients are to acquire when performing cer-
tain method invocation sequences.

The private lock object idiom is particularly well-suited to classes designed
for inheritance (Item 17). If such a class were to use its instances for locking, a
subclass could easily and unintentionally interfere with the operation of the base
class, or vice versa. By using the same lock for different purposes, the subclass
and the base class could end up “stepping on each other’s toes.” This is not just a
theoretical problem. For example, it happened with the Thread class [Bloch05,
Puzzle 77].

ITEM 70: DOCUMENT THREAD SAFETY 281

To summarize, every class should clearly document its thread safety proper-
ties with a carefully worded prose description or a thread safety annotation. The
synchronized modifier plays no part in this documentation. Conditionally
thread-safe classes must document which method invocation sequences require
external synchronization, and which lock to acquire when executing these
sequences. If you write an unconditionally thread-safe class, consider using a pri-
vate lock object in place of synchronized methods. This protects you against syn-
chronization interference by clients and subclasses and gives you the flexibility to
adopt a more sophisticated approach to concurrency control in a later release.

CHAPTER 10 CONCURRENCY282

Item 71: Use lazy initialization judiciously

Lazy initialization is the act of delaying the initialization of a field until its
value is needed. If the value is never needed, the field is never initialized. This
technique is applicable to both static and instance fields. While lazy initialization
is primarily an optimization, it can also be used to break harmful circularities in
class and instance initialization [Bloch05, Puzzle 51].

As is the case for most optimizations, the best advice for lazy initialization is
“don’t do it unless you need to” (Item 55). Lazy initialization is a double-edged
sword. It decreases the cost of initializing a class or creating an instance, at the
expense of increasing the cost of accessing the lazily initialized field. Depending
on what fraction of lazily initialized fields eventually require initialization, how
expensive it is to initialize them, and how often each field is accessed, lazy initial-
ization can (like many “optimizations”) actually harm performance.

That said, lazy initialization has its uses. If a field is accessed only on a frac-
tion of the instances of a class and it is costly to initialize the field, then lazy ini-
tialization may be worthwhile. The only way to know for sure is to measure the
performance of the class with and without lazy initialization.

In the presence of multiple threads, lazy initialization is tricky. If two or more
threads share a lazily initialized field, it is critical that some form of synchroniza-
tion be employed, or severe bugs can result (Item 66). All of the initialization
techniques discussed in this item are thread-safe.

Under most circumstances, normal initialization is preferable to lazy ini-
tialization. Here is a typical declaration for a normally initialized instance field.
Note the use of the final modifier (Item 15):

// Normal initialization of an instance field
private final FieldType field = computeFieldValue();

If you use lazy initialization to break an initialization circularity, use a
synchronized accessor, as it is the simplest, clearest alternative:

// Lazy initialization of instance field - synchronized accessor
private FieldType field;

synchronized FieldType getField() {
if (field == null)

field = computeFieldValue();
return field;

}

ITEM 71: USE LAZY INITIALIZATION JUDICIOUSLY 283

Both of these idioms (normal initialization and lazy initialization with a syn-
chronized accessor) are unchanged when applied to static fields, except that you
add the static modifier to the field and accessor declarations.

If you need to use lazy initialization for performance on a static field, use
the lazy initialization holder class idiom. This idiom (also known as the initialize-
on-demand holder class idiom) exploits the guarantee that a class will not be ini-
tialized until it is used [JLS, 12.4.1]. Here’s how it looks:

// Lazy initialization holder class idiom for static fields
private static class FieldHolder {

static final FieldType field = computeFieldValue();
}
static FieldType getField() { return FieldHolder.field; }

When the getField method is invoked for the first time, it reads Field-
Holder.field for the first time, causing the FieldHolder class to get initialized.
The beauty of this idiom is that the getField method is not synchronized and per-
forms only a field access, so lazy initialization adds practically nothing to the cost
of access. A modern VM will synchronize field access only to initialize the class.
Once the class is initialized, the VM will patch the code so that subsequent access
to the field does not involve any testing or synchronization.

If you need to use lazy initialization for performance on an instance field,
use the double-check idiom. This idiom avoids the cost of locking when access-
ing the field after it has been initialized (Item 67). The idea behind the idiom is to
check the value of the field twice (hence the name double-check): once without
locking, and then, if the field appears to be uninitialized, a second time with lock-
ing. Only if the second check indicates that the field is uninitialized does the call
initialize the field. Because there is no locking if the field is already initialized, it
is critical that the field be declared volatile (Item 66). Here is the idiom:

// Double-check idiom for lazy initialization of instance fields
private volatile FieldType field;
FieldType getField() {

FieldType result = field;
if (result == null) { // First check (no locking)

synchronized(this) {
result = field;
if (result == null) // Second check (with locking)

field = result = computeFieldValue();
}

}
return result;

}

CHAPTER 10 CONCURRENCY284

This code may appear a bit convoluted. In particular, the need for the local
variable result may be unclear. What this variable does is to ensure that field is
read only once in the common case where it’s already initialized. While not
strictly necessary, this may improve performance and is more elegant by the stan-
dards applied to low-level concurrent programming. On my machine, the method
above is about 25 percent faster than the obvious version without a local variable.

Prior to release 1.5, the double-check idiom did not work reliably because the
semantics of the volatile modifier were not strong enough to support it
[Pugh01]. The memory model introduced in release 1.5 fixed this problem [JLS,
17, Goetz06 16]. Today, the double-check idiom is the technique of choice for
lazily initializing an instance field. While you can apply the double-check idiom
to static fields as well, there is no reason to do so: the lazy initialization holder
class idiom is a better choice.

Two variants of the double-check idiom bear noting. Occasionally, you may
need to lazily initialize an instance field that can tolerate repeated initialization. If
you find yourself in this situation, you can use a variant of the double-check idiom
that dispenses with the second check. It is, not surprisingly, known as the single-
check idiom. Here is how it looks. Note that field is still declared volatile:

// Single-check idiom - can cause repeated initialization!
private volatile FieldType field;

private FieldType getField() {
FieldType result = field;
if (result == null)

field = result = computeFieldValue();
return result;

}

All of the initialization techniques discussed in this item apply to primitive
fields as well as object reference fields. When the double-check or single-check
idiom is applied to a numerical primitive field, the field’s value is checked against
0 (the default value for numerical primitive variables) rather than null.

If you don’t care whether every thread recalculates the value of a field, and the
type of the field is a primitive other than long or double, then you may choose to
remove the volatile modifier from the field declaration in the single-check
idiom. This variant is known as the racy single-check idiom. It speeds up field
access on some architectures, at the expense of additional initializations (up to one
per thread that accesses the field). This is definitely an exotic technique, not for
everyday use. It is, however, used by String instances to cache their hash codes.

ITEM 71: USE LAZY INITIALIZATION JUDICIOUSLY 285

In summary, you should initialize most fields normally, not lazily. If you must
initialize a field lazily in order to achieve your performance goals, or to break a
harmful initialization circularity, then use the appropriate lazy initialization tech-
nique. For instance fields, it is the double-check idiom; for static fields, the lazy
initialization holder class idiom. For instance fields that can tolerate repeated ini-
tialization, you may also consider the single-check idiom.

CHAPTER 10 CONCURRENCY286

Item 72: Don’t depend on the thread scheduler

When many threads are runnable, the thread scheduler determines which ones get
to run, and for how long. Any reasonable operating system will try to make this
determination fairly, but the policy can vary. Therefore, well-written programs
shouldn’t depend on the details of this policy. Any program that relies on the
thread scheduler for correctness or performance is likely to be nonportable.

The best way to write a robust, responsive, portable program is to ensure that
the average number of runnable threads is not significantly greater than the num-
ber of processors. This leaves the thread scheduler with little choice: it simply
runs the runnable threads till they’re no longer runnable. The program’s behavior
doesn’t vary too much, even under radically different thread-scheduling policies.
Note that the number of runnable threads isn’t the same as the total number of
threads, which can be much higher. Threads that are waiting are not runnable.

The main technique for keeping the number of runnable threads down is to
have each thread do some useful work and then wait for more. Threads should
not run if they aren’t doing useful work. In terms of the Executor Framework
(Item 68), this means sizing your thread pools appropriately [Goetz06 8.2], and
keeping tasks reasonably small and independent of one another. Tasks shouldn’t
be too small, or dispatching overhead will harm performance.

Threads should not busy-wait, repeatedly checking a shared object waiting for
something to happen. Besides making the program vulnerable to the vagaries of
the scheduler, busy-waiting greatly increases the load on the processor, reducing
the amount of useful work that others can accomplish. As an extreme example of
what not to do, consider this perverse reimplementation of CountDownLatch:

// Awful CountDownLatch implementation - busy-waits incessantly!
public class SlowCountDownLatch {

private int count;
public SlowCountDownLatch(int count) {

if (count < 0)
throw new IllegalArgumentException(count + " < 0");

this.count = count;
}

public void await() {
while (true) {

synchronized(this) {
if (count == 0) return;

}
}

}

ITEM 72: DON’T DEPEND ON THE THREAD SCHEDULER 287

public synchronized void countDown() {
if (count != 0)

count--;
}

}

On my machine, SlowCountDownLatch is about 2,000 times slower than
CountDownLatch when 1,000 threads wait on a latch. While this example may
seem a bit far-fetched, it’s not uncommon to see systems with one or more threads
that are unnecessarily runnable. The results may not be as dramatic as Slow-
CountDownLatch, but performance and portability are likely to suffer.

When faced with a program that barely works because some threads aren’t
getting enough CPU time relative to others, resist the temptation to “fix” the
program by putting in calls to Thread.yield. You may succeed in getting the
program to work after a fashion, but it will not be portable. The same yield invo-
cations that improve performance on one JVM implementation might make it
worse on a second and have no effect on a third. Thread.yield has no testable
semantics. A better course of action is to restructure the application to reduce the
number of concurrently runnable threads.

A related technique, to which similar caveats apply, is adjusting thread priori-
ties. Thread priorities are among the least portable features of the Java plat-
form. It is not unreasonable to tune the responsiveness of an application by
tweaking a few thread priorities, but it is rarely necessary and is not portable. It is
unreasonable to solve a serious liveness problem by adjusting thread priorities.
The problem is likely to return until you find and fix the underlying cause.

In the first edition of this book, it was said that the only use most program-
mers would ever have for Thread.yield was to artificially increase the concur-
rency for testing. The idea was to shake out bugs by exploring a larger fraction of
the program’s statespace. This technique was once quite effective, but it was never
guaranteed to work. It is within specification for Thread.yield to do nothing at
all, simply returning control to its caller. Some modern VMs actually do this.
Therefore, you should use Thread.sleep(1) instead of Thread.yield for con-
currency testing. Do not use Thread.sleep(0), which can return immediately.

In summary, do not depend on the thread scheduler for the correctness of your
program. The resulting program will be neither robust nor portable. As a corollary,
do not rely on Thread.yield or thread priorities. These facilities are merely hints
to the scheduler. Thread priorities may be used sparingly to improve the quality of
service of an already working program, but they should never be used to “fix” a
program that barely works.

CHAPTER 10 CONCURRENCY288

Item 73: Avoid thread groups

Along with threads, locks, and monitors, a basic abstraction offered by the thread-
ing system is thread groups. Thread groups were originally envisioned as a mech-
anism for isolating applets for security purposes. They never really fulfilled this
promise, and their security importance has waned to the extent that they aren’t
even mentioned in the standard work on the Java security model [Gong03].

Given that thread groups don’t provide any security functionality to speak of,
what functionality do they provide? Not much. They allow you to apply certain
Thread primitives to a bunch of threads at once. Several of these primitives have
been deprecated, and the remainder are infrequently used.

In an ironic twist, the ThreadGroup API is weak from a thread safety
standpoint. To get a list of the active threads in a thread group, you must invoke
the enumerate method, which takes as a parameter an array large enough to hold
all the active threads. The activeCount method returns the number of active
threads in a thread group, but there is no guarantee that this count will still be
accurate once an array has been allocated and passed to the enumerate method. If
the thread count has increased and the array is too small, the enumerate method
silently ignores any threads for which there is no room in the array.

The API that lists the subgroups of a thread group is similarly flawed. While
these problems could have been fixed with the addition of new methods, they
haven’t, because there is no real need: thread groups are obsolete.

Prior to release 1.5, there was one small piece of functionality that was avail-
able only with the ThreadGroup API: the ThreadGroup.uncaughtException
method was the only way to gain control when a thread threw an uncaught excep-
tion. This functionality is useful, for example, to direct stack traces to an applica-
tion-specific log. As of release 1.5, however, the same functionality is available
with Thread’s setUncaughtExceptionHandler method.

To summarize, thread groups don’t provide much in the way of useful func-
tionality, and much of the functionality they do provide is flawed. Thread groups
are best viewed as an unsuccessful experiment, and you should simply ignore their
existence. If you design a class that deals with logical groups of threads, you
should probably use thread pool executors (Item 68).

289

C H A P T E R 11
Serialization

THIS chapter concerns the object serialization API, which provides a frame-
work for encoding objects as byte streams and reconstructing objects from their
byte-stream encodings. Encoding an object as a byte stream is known as serializ-
ing the object; the reverse process is known as deserializing it. Once an object has
been serialized, its encoding can be transmitted from one running virtual machine
to another or stored on disk for later deserialization. Serialization provides the
standard wire-level object representation for remote communication, and the stan-
dard persistent data format for the JavaBeans component architecture. A notable
feature of this chapter is the serialization proxy pattern (Item 78), which can help
you avoid many of the pitfalls of object serialization.

Item 74: Implement Serializable judiciously

Allowing a class’s instances to be serialized can be as simple as adding the words
“implements Serializable” to its declaration. Because this is so easy to do,
there is a common misconception that serialization requires little effort on the part
of the programmer. The truth is far more complex. While the immediate cost to
make a class serializable can be negligible, the long-term costs are often substantial.

A major cost of implementing Serializable is that it decreases the flexi-
bility to change a class’s implementation once it has been released. When a
class implements Serializable, its byte-stream encoding (or serialized form)
becomes part of its exported API. Once you distribute a class widely, you are gen-
erally required to support the serialized form forever, just as you are required to
support all other parts of the exported API. If you do not make the effort to design
a custom serialized form, but merely accept the default, the serialized form will
forever be tied to the class’s original internal representation. In other words, if you
accept the default serialized form, the class’s private and package-private instance

CHAPTER 11 SERIALIZATION290

fields become part of its exported API, and the practice of minimizing access to
fields (Item 13) loses its effectiveness as a tool for information hiding.

If you accept the default serialized form and later change the class’s internal
representation, an incompatible change in the serialized form might result. Clients
attempting to serialize an instance using an old version of the class and deserialize
it using the new version will experience program failures. It is possible to change
the internal representation while maintaining the original serialized form (using
ObjectOutputStream.putFields and ObjectInputStream.readFields), but it
can be difficult and leaves visible warts in the source code. Therefore, you should
carefully design a high-quality serialized form that you are willing to live with for
the long haul (Items 75, 78). Doing so will add to the initial cost of development,
but it is worth the effort. Even a well-designed serialized form places constraints
on the evolution of a class; an ill-designed serialized form can be crippling.

A simple example of the constraints on evolution that accompany serializabil-
ity concerns stream unique identifiers, more commonly known as serial version
UIDs. Every serializable class has a unique identification number associated with
it. If you do not specify this number explicitly by declaring a static final long field
named serialVersionUID, the system automatically generates it at runtime by
applying a complex procedure to the class. The automatically generated value is
affected by the class’s name, the names of the interfaces it implements, and all of
its public and protected members. If you change any of these things in any way,
for example, by adding a trivial convenience method, the automatically generated
serial version UID changes. If you fail to declare an explicit serial version UID,
compatibility will be broken, resulting in an InvalidClassException at runtime.

A second cost of implementing Serializable is that it increases the likeli-
hood of bugs and security holes. Normally, objects are created using construc-
tors; serialization is an extralinguistic mechanism for creating objects. Whether
you accept the default behavior or override it, deserialization is a “hidden con-
structor” with all of the same issues as other constructors. Because there is no
explicit constructor associated with deserialization, it is easy to forget that you
must ensure that it guarantees all of the invariants established by the constructors
and that it does not allow an attacker to gain access to the internals of the object
under construction. Relying on the default deserialization mechanism can easily
leave objects open to invariant corruption and illegal access (Item 76).

A third cost of implementing Serializable is that it increases the testing
burden associated with releasing a new version of a class. When a serializable
class is revised, it is important to check that it is possible to serialize an instance in
the new release and deserialize it in old releases, and vice versa. The amount of

ITEM 74: IMPLEMENT SERIALIZABLE JUDICIOUSLY 291

testing required is thus proportional to the product of the number of serializable
classes and the number of releases, which can be large. These tests cannot be con-
structed automatically because, in addition to binary compatibility, you must test
for semantic compatibility. In other words, you must ensure both that the serializa-
tion-deserialization process succeeds and that it results in a faithful replica of the
original object. The greater the change to a serializable class, the greater the need
for testing. The need is reduced if a custom serialized form is carefully designed
when the class is first written (Items 75, 78), but it does not vanish entirely.

Implementing the Serializable interface is not a decision to be under-
taken lightly. It offers real benefits. It is essential if a class is to participate in a
framework that relies on serialization for object transmission or persistence. Also,
it greatly eases the use of a class as a component in another class that must imple-
ment Serializable. There are, however, many real costs associated with imple-
menting Serializable. Each time you design a class, weigh the costs against the
benefits. As a rule of thumb, value classes such as Date and BigInteger should
implement Serializable, as should most collection classes. Classes representing
active entities, such as thread pools, should rarely implement Serializable.

Classes designed for inheritance (Item 17) should rarely implement
Serializable, and interfaces should rarely extend it. Violating this rule places
a significant burden on anyone who extends the class or implements the interface.
There are times when it is appropriate to violate the rule. For example, if a class or
interface exists primarily to participate in a framework that requires all
participants to implement Serializable, then it makes perfect sense for the class
or interface to implement or extend Serializable.

Classes designed for inheritance that do implement Serializable include
Throwable, Component, and HttpServlet. Throwable implements Serializable
so exceptions from remote method invocation (RMI) can be passed from server to
client. Component implements Serializable so GUIs can be sent, saved, and
restored. HttpServlet implements Serializable so session state can be cached.

If you implement a class with instance fields that is serializable and extend-
able, there is a caution you should be aware of. If the class has invariants that
would be violated if its instance fields were initialized to their default values (zero
for integral types, false for boolean, and null for object reference types), you
must add this readObjectNoData method to the class:

// readObjectNoData for stateful extendable serializable classes
private void readObjectNoData() throws InvalidObjectException {
 throw new InvalidObjectException("Stream data required");
}

CHAPTER 11 SERIALIZATION292

In case you’re curious, the readObjectNoData method was added in release
1.4 to cover a corner case involving the addition of a serializable superclass to an
existing serializable class. Details can be found in the serialization specification
[Serialization, 3.5].

There is one caveat regarding the decision not to implement Serializable. If
a class that is designed for inheritance is not serializable, it may be impossible to
write a serializable subclass. Specifically, it will be impossible if the superclass
does not provide an accessible parameterless constructor. Therefore, you should
consider providing a parameterless constructor on nonserializable classes
designed for inheritance. Often this requires no effort because many classes
designed for inheritance have no state, but this is not always the case.

It is best to create objects with their invariants already established (Item 15). If
client-provided data is required to establish these invariants, this precludes the use
of a parameterless constructor. Naively adding a parameterless constructor and a
separate initialization method to a class whose remaining constructors establish its
invariants would complicate the state space, increasing the likelihood of error.

Here is a way to add a parameterless constructor to a nonserializable extend-
able class that avoids these deficiencies. Suppose the class has one constructor:

public AbstractFoo(int x, int y) { ... }

The following transformation adds a protected parameterless constructor and an ini-
tialization method. The initialization method has the same parameters as the normal
constructor and establishes the same invariants. Note that the variables that store the
object’s state (x and y) can’t be final, as they are set by the initialize method:

// Nonserializable stateful class allowing serializable subclass
public abstract class AbstractFoo {

private int x, y; // Our state

// This enum and field are used to track initialization
private enum State { NEW, INITIALIZING, INITIALIZED };
private final AtomicReference<State> init =

new AtomicReference<State>(State.NEW);

public AbstractFoo(int x, int y) { initialize(x, y); }

// This constructor and the following method allow
// subclass's readObject method to initialize our state.
protected AbstractFoo() { }

ITEM 74: IMPLEMENT SERIALIZABLE JUDICIOUSLY 293

protected final void initialize(int x, int y) {
if (!init.compareAndSet(State.NEW, State.INITIALIZING))

throw new IllegalStateException(
"Already initialized");

this.x = x;
this.y = y;
... // Do anything else the original constructor did
init.set(State.INITIALIZED);

}

// These methods provide access to internal state so it can
// be manually serialized by subclass's writeObject method.
protected final int getX() { checkInit(); return x; }
protected final int getY() { checkInit(); return y; }
// Must call from all public and protected instance methods
private void checkInit() {

if (init.get() != State.INITIALIZED)
throw new IllegalStateException("Uninitialized");

}
... // Remainder omitted

}

All public and protected instance methods in AbstractFoo must invoke
checkInit before doing anything else. This ensures that method invocations fail
quickly and cleanly if a poorly written subclass fails to initialize an instance. Note
that the initialized field is an atomic reference (java.util.concur-
rent.atomic.AtomicReference). This is necessary to ensure object integrity in
the face of a determined adversary. In the absence of this precaution, if one thread
were to invoke initialize on an instance while a second thread attempted to use
it, the second thread might see the instance in an inconsistent state. With this
mechanism in place, it is reasonably straightforward to implement a serializable
subclass:

// Serializable subclass of nonserializable stateful class
public class Foo extends AbstractFoo implements Serializable {

private void readObject(ObjectInputStream s)
throws IOException, ClassNotFoundException {

s.defaultReadObject();

// Manually deserialize and initialize superclass state
int x = s.readInt();
int y = s.readInt();
initialize(x, y);

}

CHAPTER 11 SERIALIZATION294

private void writeObject(ObjectOutputStream s)
throws IOException {

s.defaultWriteObject();

// Manually serialize superclass state
s.writeInt(getX());
s.writeInt(getY());

}

// Constructor does not use the fancy mechanism
public Foo(int x, int y) { super(x, y); }

private static final long serialVersionUID = 1856835860954L;
}

Inner classes (Item 22) should not implement Serializable. They use
compiler-generated synthetic fields to store references to enclosing instances and
to store values of local variables from enclosing scopes. How these fields corre-
spond to the class definition is unspecified, as are the names of anonymous and
local classes. Therefore, the default serialized form of an inner class is ill-
defined. A static member class can, however, implement Serializable.

To summarize, the ease of implementing Serializable is specious. Unless a
class is to be thrown away after a short period of use, implementing Serializ-
able is a serious commitment that should be made with care. Extra caution is war-
ranted if a class is designed for inheritance. For such classes, an intermediate
design point between implementing Serializable and prohibiting it in sub-
classes is to provide an accessible parameterless constructor. This design point
permits, but does not require, subclasses to implement Serializable.

ITEM 75: CONSIDER USING A CUSTOM SERIALIZED FORM 295

Item 75: Consider using a custom serialized form

When you are producing a class under time pressure, it is generally appropriate to
concentrate your efforts on designing the best API. Sometimes this means releas-
ing a “throwaway” implementation that you know you’ll replace in a future
release. Normally this is not a problem, but if the class implements Serializable
and uses the default serialized form, you’ll never be able to escape completely
from the throwaway implementation. It will dictate the serialized form forever.
This is not just a theoretical problem. It happened to several classes in the Java
platform libraries, including BigInteger.

Do not accept the default serialized form without first considering
whether it is appropriate. Accepting the default serialized form should be a con-
scious decision that this encoding is reasonable from the standpoint of flexibility,
performance, and correctness. Generally speaking, you should accept the default
serialized form only if it is largely identical to the encoding that you would choose
if you were designing a custom serialized form.

The default serialized form of an object is a reasonably efficient encoding of
the physical representation of the object graph rooted at the object. In other words,
it describes the data contained in the object and in every object that is reachable
from this object. It also describes the topology by which all of these objects are
interlinked. The ideal serialized form of an object contains only the logical data
represented by the object. It is independent of the physical representation.

The default serialized form is likely to be appropriate if an object’s phys-
ical representation is identical to its logical content. For example, the default
serialized form would be reasonable for the following class, which simplistically
represents a person’s name:

// Good candidate for default serialized form
public class Name implements Serializable {

/**
* Last name. Must be non-null.
* @serial
*/
private final String lastName;

/**
* First name. Must be non-null.
* @serial
*/
private final String firstName;

CHAPTER 11 SERIALIZATION296

/**
* Middle name, or null if there is none.
* @serial
*/
private final String middleName;

... // Remainder omitted
}

Logically speaking, a name consists of three strings that represent a last name,
a first name, and a middle name. The instance fields in Name precisely mirror this
logical content.

Even if you decide that the default serialized form is appropriate, you
often must provide a readObject method to ensure invariants and security. In
the case of Name, the readObject method must ensure that lastName and first-
Name are non-null. This issue is discussed at length in Items 76 and 78.

Note that there are documentation comments on the lastName, firstName,
and middleName fields, even though they are private. That is because these private
fields define a public API, which is the serialized form of the class, and this public
API must be documented. The presence of the @serial tag tells the Javadoc util-
ity to place this documentation on a special page that documents serialized forms.

Near the opposite end of the spectrum from Name, consider the following
class, which represents a list of strings (ignoring for the moment that you’d be bet-
ter off using one of the standard List implementations):

// Awful candidate for default serialized form
public final class StringList implements Serializable {

private int size = 0;
private Entry head = null;

private static class Entry implements Serializable {
String data;
Entry next;
Entry previous;

}

... // Remainder omitted
}

Logically speaking, this class represents a sequence of strings. Physically, it
represents the sequence as a doubly linked list. If you accept the default serialized
form, the serialized form will painstakingly mirror every entry in the linked list
and all the links between the entries, in both directions.

ITEM 75: CONSIDER USING A CUSTOM SERIALIZED FORM 297

Using the default serialized form when an object’s physical representa-
tion differs substantially from its logical data content has four disadvantages:

• It permanently ties the exported API to the current internal representa-
tion. In the above example, the private StringList.Entry class becomes part
of the public API. If the representation is changed in a future release, the
StringList class will still need to accept the linked list representation on input
and generate it on output. The class will never be rid of all the code dealing
with linked list entries, even if it doesn’t use them anymore.

• It can consume excessive space. In the above example, the serialized form un-
necessarily represents each entry in the linked list and all the links. These en-
tries and links are mere implementation details, not worthy of inclusion in the
serialized form. Because the serialized form is excessively large, writing it to
disk or sending it across the network will be excessively slow.

• It can consume excessive time. The serialization logic has no knowledge of
the topology of the object graph, so it must go through an expensive graph
traversal. In the example above, it would be sufficient simply to follow the
next references.

• It can cause stack overflows. The default serialization procedure performs a
recursive traversal of the object graph, which can cause stack overflows even
for moderately sized object graphs. Serializing a StringList instance with
1,258 elements causes the stack to overflow on my machine. The number of
elements required to cause this problem may vary depending on the JVM im-
plementation and command line flags; some implementations may not have
this problem at all.

A reasonable serialized form for StringList is simply the number of strings
in the list, followed by the strings themselves. This constitutes the logical data
represented by a StringList, stripped of the details of its physical representation.
Here is a revised version of StringList containing writeObject and readOb-
ject methods implementing this serialized form. As a reminder, the transient
modifier indicates that an instance field is to be omitted from a class’s default seri-
alized form:

CHAPTER 11 SERIALIZATION298

// StringList with a reasonable custom serialized form
public final class StringList implements Serializable {

private transient int size = 0;
private transient Entry head = null;

// No longer Serializable!
private static class Entry {

String data;
Entry next;
Entry previous;

}

// Appends the specified string to the list
public final void add(String s) { ... }

/**
* Serialize this {@code StringList} instance.
*
* @serialData The size of the list (the number of strings
* it contains) is emitted ({@code int}), followed by all of
* its elements (each a {@code String}), in the proper
* sequence.
*/
private void writeObject(ObjectOutputStream s)

throws IOException {
s.defaultWriteObject();
s.writeInt(size);

// Write out all elements in the proper order.
for (Entry e = head; e != null; e = e.next)

s.writeObject(e.data);
}

private void readObject(ObjectInputStream s)
throws IOException, ClassNotFoundException {

s.defaultReadObject();
int numElements = s.readInt();

// Read in all elements and insert them in list
for (int i = 0; i < numElements; i++)

add((String) s.readObject());
}

... // Remainder omitted
}

ITEM 75: CONSIDER USING A CUSTOM SERIALIZED FORM 299

Note that the first thing writeObject does is to invoke defaultWriteObject,
and the first thing readObject does is to invoke defaultReadObject, even though
all of StringList’s fields are transient. If all instance fields are transient, it is
technically permissible to dispense with invoking defaultWriteObject and
defaultReadObject, but it is not recommended. Even if all instance fields are
transient, invoking defaultWriteObject affects the serialized form, resulting in
greatly enhanced flexibility. The resulting serialized form makes it possible to add
nontransient instance fields in a later release while preserving backward and
forward compatibility. If an instance is serialized in a later version and deserialized
in an earlier version, the added fields will be ignored. Had the earlier version’s
readObject method failed to invoke defaultReadObject, the deserialization
would fail with a StreamCorruptedException.

Note that there is a documentation comment on the writeObject method,
even though it is private. This is analogous to the documentation comment on the
private fields in the Name class. This private method defines a public API, which is
the serialized form, and that public API should be documented. Like the @serial
tag for fields, the @serialData tag for methods tells the Javadoc utility to place
this documentation on the serialized forms page.

To lend some sense of scale to the earlier performance discussion, if the aver-
age string length is ten characters, the serialized form of the revised version of
StringList occupies about half as much space as the serialized form of the origi-
nal. On my machine, serializing the revised version of StringList is over twice
as fast as serializing the original version, again with a string length of ten. Finally,
there is no stack overflow problem in the revised form, hence no practical upper
limit to the size of a StringList that can be serialized.

While the default serialized form would be bad for StringList, there are
classes for which it would be far worse. For StringList, the default serialized
form is inflexible and performs badly, but it is correct in the sense that serializing
and deserializing a StringList instance yields a faithful copy of the original
object with all of its invariants intact. This is not the case for any object whose
invariants are tied to implementation-specific details.

For example, consider the case of a hash table. The physical representation is
a sequence of hash buckets containing key-value entries. The bucket that an entry
resides in is a function of the hash code of its key, which is not, in general, guaran-
teed to be the same from JVM implementation to JVM implementation. In fact, it
isn’t even guaranteed to be the same from run to run. Therefore, accepting the
default serialized form for a hash table would constitute a serious bug. Serializing

CHAPTER 11 SERIALIZATION300

and deserializing the hash table could yield an object whose invariants were seri-
ously corrupt.

Whether or not you use the default serialized form, every instance field that is
not labeled transient will be serialized when the defaultWriteObject method
is invoked. Therefore, every instance field that can be made transient should be
made so. This includes redundant fields, whose values can be computed from “pri-
mary data fields,” such as a cached hash value. It also includes fields whose values
are tied to one particular run of the JVM, such as a long field representing a
pointer to a native data structure. Before deciding to make a field nontransient,
convince yourself that its value is part of the logical state of the object. If you
use a custom serialized form, most or all of the instance fields should be labeled
transient, as in the StringList example shown above.

If you are using the default serialized form and you have labeled one or more
fields transient, remember that these fields will be initialized to their default
values when an instance is deserialized: null for object reference fields, zero for
numeric primitive fields, and false for boolean fields [JLS, 4.12.5]. If these val-
ues are unacceptable for any transient fields, you must provide a readObject
method that invokes the defaultReadObject method and then restores transient
fields to acceptable values (Item 76). Alternatively, these fields can be lazily ini-
tialized the first time they are used (Item 71).

Whether or not you use the default serialized form, you must impose any
synchronization on object serialization that you would impose on any other
method that reads the entire state of the object. So, for example, if you have a
thread-safe object (Item 70) that achieves its thread safety by synchronizing every
method, and you elect to use the default serialized form, use the following writ-
eObject method:

// writeObject for synchronized class with default serialized form
private synchronized void writeObject(ObjectOutputStream s)

throws IOException {
s.defaultWriteObject();

}

If you put synchronization in the writeObject method, you must ensure that it
adheres to the same lock-ordering constraints as other activity, or you risk a
resource-ordering deadlock [Goetz06, 10.1.5].

Regardless of what serialized form you choose, declare an explicit serial
version UID in every serializable class you write. This eliminates the serial ver-
sion UID as a potential source of incompatibility (Item 74). There is also a small

ITEM 75: CONSIDER USING A CUSTOM SERIALIZED FORM 301

performance benefit. If no serial version UID is provided, an expensive computa-
tion is required to generate one at runtime.

Declaring a serial version UID is simple. Just add this line to your class:

private static final long serialVersionUID = randomLongValue ;

If you write a new class, it doesn’t matter what value you choose for
randomLongValue. You can generate the value by running the serialver utility
on the class, but it’s also fine to pick a number out of thin air. If you modify an
existing class that lacks a serial version UID, and you want the new version to
accept existing serialized instances, you must use the value that was automatically
generated for the old version. You can get this number by running the serialver
utility on the old version of the class—the one for which serialized instances exist.

If you ever want to make a new version of a class that is incompatible with
existing versions, merely change the value in the serial version UID declaration.
This will cause attempts to deserialize serialized instances of previous versions to
fail with an InvalidClassException.

To summarize, when you have decided that a class should be serializable
(Item 74), think hard about what the serialized form should be. Use the default
serialized form only if it is a reasonable description of the logical state of the
object; otherwise design a custom serialized form that aptly describes the object.
You should allocate as much time to designing the serialized form of a class as
you allocate to designing its exported methods (Item 40). Just as you cannot elim-
inate exported methods from future versions, you cannot eliminate fields from the
serialized form; they must be preserved forever to ensure serialization compatibil-
ity. Choosing the wrong serialized form can have a permanent, negative impact on
the complexity and performance of a class.

CHAPTER 11 SERIALIZATION302

Item 76: Write readObject methods defensively

Item 39 contains an immutable date-range class containing mutable private Date
fields. The class goes to great lengths to preserve its invariants and its immutabil-
ity by defensively copying Date objects in its constructor and accessors. Here is
the class:

// Immutable class that uses defensive copying
public final class Period {

private final Date start;
private final Date end;

/**
* @param start the beginning of the period
* @param end the end of the period; must not precede start
* @throws IllegalArgumentException if start is after end
* @throws NullPointerException if start or end is null
*/
public Period(Date start, Date end) {

this.start = new Date(start.getTime());
this.end = new Date(end.getTime());
if (this.start.compareTo(this.end) > 0)

throw new IllegalArgumentException(
start + " after " + end);

}

public Date start () { return new Date(start.getTime()); }

public Date end () { return new Date(end.getTime()); }

public String toString() { return start + " - " + end; }

... // Remainder omitted
}

Suppose you decide that you want this class to be serializable. Because the
physical representation of a Period object exactly mirrors its logical data content,
it is not unreasonable to use the default serialized form (Item 75). Therefore, it
might seem that all you have to do to make the class serializable is to add the
words “implements Serializable” to the class declaration. If you did so, how-
ever, the class would no longer guarantee its critical invariants.

The problem is that the readObject method is effectively another public con-
structor, and it demands all of the same care as any other constructor. Just as a
constructor must check its arguments for validity (Item 38) and make defensive

ITEM 76: WRITE READOBJECT METHODS DEFENSIVELY 303

copies of parameters where appropriate (Item 39), so must a readObject method.
If a readObject method fails to do either of these things, it is a relatively simple
matter for an attacker to violate the class’s invariants.

Loosely speaking, readObject is a constructor that takes a byte stream as its
sole parameter. In normal use, the byte stream is generated by serializing a nor-
mally constructed instance. The problem arises when readObject is presented
with a byte stream that is artificially constructed to generate an object that violates
the invariants of its class. Assume that we simply added implements Serializ-

able to the class declaration for Period. This ugly program would then generate a
Period instance whose end precedes its start:

public class BogusPeriod {
// Byte stream could not have come from real Period instance!
private static final byte[] serializedForm = new byte[] {
(byte)0xac, (byte)0xed, 0x00, 0x05, 0x73, 0x72, 0x00, 0x06,
0x50, 0x65, 0x72, 0x69, 0x6f, 0x64, 0x40, 0x7e, (byte)0xf8,
0x2b, 0x4f, 0x46, (byte)0xc0, (byte)0xf4, 0x02, 0x00, 0x02,
0x4c, 0x00, 0x03, 0x65, 0x6e, 0x64, 0x74, 0x00, 0x10, 0x4c,
0x6a, 0x61, 0x76, 0x61, 0x2f, 0x75, 0x74, 0x69, 0x6c, 0x2f,
0x44, 0x61, 0x74, 0x65, 0x3b, 0x4c, 0x00, 0x05, 0x73, 0x74,
0x61, 0x72, 0x74, 0x71, 0x00, 0x7e, 0x00, 0x01, 0x78, 0x70,
0x73, 0x72, 0x00, 0x0e, 0x6a, 0x61, 0x76, 0x61, 0x2e, 0x75,
0x74, 0x69, 0x6c, 0x2e, 0x44, 0x61, 0x74, 0x65, 0x68, 0x6a,
(byte)0x81, 0x01, 0x4b, 0x59, 0x74, 0x19, 0x03, 0x00, 0x00,
0x78, 0x70, 0x77, 0x08, 0x00, 0x00, 0x00, 0x66, (byte)0xdf,
0x6e, 0x1e, 0x00, 0x78, 0x73, 0x71, 0x00, 0x7e, 0x00, 0x03,
0x77, 0x08, 0x00, 0x00, 0x00, (byte)0xd5, 0x17, 0x69, 0x22,
0x00, 0x78 };

public static void main(String[] args) {
Period p = (Period) deserialize(serializedForm);
System.out.println(p);

}

// Returns the object with the specified serialized form
private static Object deserialize(byte[] sf) {

try {
InputStream is = new ByteArrayInputStream(sf);
ObjectInputStream ois = new ObjectInputStream(is);
return ois.readObject();

} catch (Exception e) {
throw new IllegalArgumentException(e);

}
}

}

CHAPTER 11 SERIALIZATION304

The byte array literal used to initialize serializedForm was generated by
serializing a normal Period instance and hand-editing the resulting byte stream.
The details of the stream are unimportant to the example, but if you’re curious, the
serialization byte-stream format is described in the Java™ Object Serialization
Specification [Serialization, 6]. If you run this program, it prints “Fri Jan 01

12:00:00 PST 1999 - Sun Jan 01 12:00:00 PST 1984.” Simply declaring Period
serializable enabled us to create an object that violates its class invariants.

To fix this problem, provide a readObject method for Period that calls
defaultReadObject and then checks the validity of the deserialized object. If the
validity check fails, the readObject method throws an InvalidObjectExcep-
tion, preventing the deserialization from completing:

// readObject method with validity checking
private void readObject(ObjectInputStream s)

throws IOException, ClassNotFoundException {
s.defaultReadObject();

// Check that our invariants are satisfied
if (start.compareTo(end) > 0)

throw new InvalidObjectException(start +" after "+ end);
}

While this fix prevents an attacker from creating an invalid Period instance,
there is a more subtle problem still lurking. It is possible to create a mutable
Period instance by fabricating a byte stream that begins with a valid Period
instance and then appends extra references to the private Date fields internal to the
Period instance. The attacker reads the Period instance from the ObjectInput-
Stream and then reads the “rogue object references” that were appended to the
stream. These references give the attacker access to the objects referenced by the
private Date fields within the Period object. By mutating these Date instances,
the attacker can mutate the Period instance. The following class demonstrates this
attack:

public class MutablePeriod {
// A period instance
public final Period period;

// period's start field, to which we shouldn't have access
public final Date start;

// period's end field, to which we shouldn't have access
public final Date end;

ITEM 76: WRITE READOBJECT METHODS DEFENSIVELY 305

public MutablePeriod() {
try {

ByteArrayOutputStream bos =
new ByteArrayOutputStream();

ObjectOutputStream out =
new ObjectOutputStream(bos);

// Serialize a valid Period instance
out.writeObject(new Period(new Date(), new Date()));

/*
* Append rogue "previous object refs" for internal
* Date fields in Period. For details, see "Java
* Object Serialization Specification," Section 6.4.
*/
byte[] ref = { 0x71, 0, 0x7e, 0, 5 }; // Ref #5
bos.write(ref); // The start field
ref[4] = 4; // Ref # 4
bos.write(ref); // The end field

// Deserialize Period and "stolen" Date references
ObjectInputStream in = new ObjectInputStream(
new ByteArrayInputStream(bos.toByteArray()));
period = (Period) in.readObject();
start = (Date) in.readObject();
end = (Date) in.readObject();

} catch (Exception e) {
throw new AssertionError(e);

}
}

}

To see the attack in action, run the following program:

public static void main(String[] args) {
MutablePeriod mp = new MutablePeriod();
Period p = mp.period;
Date pEnd = mp.end;

// Let's turn back the clock
pEnd.setYear(78);
System.out.println(p);

// Bring back the 60s!
pEnd.setYear(69);
System.out.println(p);

}

CHAPTER 11 SERIALIZATION306

Running this program produces the following output:

Wed Apr 02 11:04:26 PDT 2008 - Sun Apr 02 11:04:26 PST 1978
Wed Apr 02 11:04:26 PDT 2008 - Wed Apr 02 11:04:26 PST 1969

While the Period instance is created with its invariants intact, it is possible to
modify its internal components at will. Once in possession of a mutable Period
instance, an attacker might cause great harm by passing the instance on to a class
that depends on Period’s immutability for its security. This is not so far-fetched:
there are classes that depend on String’s immutability for their security.

The source of the problem is that Period’s readObject method is not doing
enough defensive copying. When an object is deserialized, it is critical to
defensively copy any field containing an object reference that a client must
not possess. Therefore, every serializable immutable class containing private
mutable components must defensively copy these components in its readObject
method. The following readObject method suffices to ensure Period’s invariants
and to maintain its immutability:

// readObject method with defensive copying and validity checking
private void readObject(ObjectInputStream s)

throws IOException, ClassNotFoundException {
s.defaultReadObject();

// Defensively copy our mutable components
start = new Date(start.getTime());
end = new Date(end.getTime());

// Check that our invariants are satisfied
if (start.compareTo(end) > 0)

throw new InvalidObjectException(start +" after "+ end);
}

Note that the defensive copy is performed prior to the validity check and that
we did not use Date’s clone method to perform the defensive copy. Both of these
details are required to protect Period against attack (Item 39). Note also that
defensive copying is not possible for final fields. To use the readObject method,
we must make the start and end fields nonfinal. This is unfortunate, but it is the
lesser of two evils. With the new readObject method in place and the final mod-
ifier removed from the start and end fields, the MutablePeriod class is rendered
ineffective. The above attack program now generates this output:

Wed Apr 02 11:05:47 PDT 2008 - Wed Apr 02 11:05:47 PDT 2008
Wed Apr 02 11:05:47 PDT 2008 - Wed Apr 02 11:05:47 PDT 2008

ITEM 76: WRITE READOBJECT METHODS DEFENSIVELY 307

In release 1.4, the writeUnshared and readUnshared methods were added to
ObjectOutputStream with the goal of thwarting rogue object reference attacks
without the cost of defensive copying [Serialization]. Unfortunately, these meth-
ods are vulnerable to sophisticated attacks similar in nature to the ElvisStealer
attack described in Item 77. Do not use the writeUnshared and readUnshared
methods. They are typically faster than defensive copying, but they don’t provide
the necessary safety guarantee.

Here is a simple litmus test for deciding whether the default readObject
method is acceptable for a class: would you feel comfortable adding a public con-
structor that took as parameters the values for each nontransient field in the object
and stored the values in the fields with no validation whatsoever? If not, you must
provide a readObject method, and it must perform all the validity checking and
defensive copying that would be required of a constructor. Alternatively, you can
use the serialization proxy pattern (Item 78).

There is one other similarity between readObject methods and constructors,
concerning nonfinal serializable classes. A readObject method must not invoke
an overridable method, directly or indirectly (Item 17). If this rule is violated and
the method is overridden, the overriding method will run before the subclass’s
state has been deserialized. A program failure is likely to result [Bloch05, Puzzle
91].

To summarize, anytime you write a readObject method, adopt the mind-set
that you are writing a public constructor that must produce a valid instance regard-
less of what byte stream it is given. Do not assume that the byte stream represents
an actual serialized instance. While the examples in this item concern a class that
uses the default serialized form, all of the issues that were raised apply equally to
classes with custom serialized forms. Here, in summary form, are the guidelines
for writing a bulletproof readObject method:

• For classes with object reference fields that must remain private, defensively
copy each object in such a field. Mutable components of immutable classes fall
into this category.

• Check any invariants and throw an InvalidObjectException if a check fails.
The checks should follow any defensive copying.

• If an entire object graph must be validated after it is deserialized, use the
ObjectInputValidation interface [JavaSE6, Serialization].

• Do not invoke any overridable methods in the class, directly or indirectly.

CHAPTER 11 SERIALIZATION308

Item 77: For instance control, prefer enum types to readResolve

Item 3 describes the Singleton pattern and gives the following example of a single-
ton class. This class restricts access to its constructor to ensure that only a single
instance is ever created:

public class Elvis {
public static final Elvis INSTANCE = new Elvis();
private Elvis() { ... }

public void leaveTheBuilding() { ... }
}

As noted in Item 3, this class would no longer be a singleton if the words
“implements Serializable” were added to its declaration. It doesn’t matter
whether the class uses the default serialized form or a custom serialized form
(Item 75), nor does it matter whether the class provides an explicit readObject
method (Item 76). Any readObject method, whether explicit or default, returns a
newly created instance, which will not be the same instance that was created at
class initialization time.

The readResolve feature allows you to substitute another instance for the one
created by readObject [Serialization, 3.7]. If the class of an object being deserial-
ized defines a readResolve method with the proper declaration, this method is
invoked on the newly created object after it is deserialized. The object reference
returned by this method is then returned in place of the newly created object. In
most uses of this feature, no reference to the newly created object is retained, so it
immediately becomes eligible for garbage collection.

If the Elvis class is made to implement Serializable, the following
readResolve method suffices to guarantee the singleton property:

// readResolve for instance control - you can do better!
private Object readResolve() {

// Return the one true Elvis and let the garbage collector
// take care of the Elvis impersonator.
return INSTANCE;

}

This method ignores the deserialized object, returning the distinguished Elvis
instance that was created when the class was initialized. Therefore, the serialized
form of an Elvis instance need not contain any real data; all instance fields should
be declared transient. In fact, if you depend on readResolve for instance

ITEM 77: FOR INSTANCE CONTROL, PREFER ENUM TYPES TO READRESOLVE 309

control, all instance fields with object reference types must be declared
transient. Otherwise, it is possible for a determined attacker to secure a
reference to the deserialized object before its readResolve method is run, using a
technique that is vaguely similar to the MutablePeriod attack in Item 76.

The attack is a bit complicated, but the underlying idea is simple. If a
singleton contains a nontransient object reference field, the contents of this field
will be deserialized before the singleton’s readResolve method is run. This
allows a carefully crafted stream to “steal” a reference to the originally
deserialized singleton at the time the contents of the object reference field are
deserialized.

Here’s how it works in more detail. First, write a “stealer” class that has both a
readResolve method and an instance field that refers to the serialized singleton in
which the stealer “hides.” In the serialization stream, replace the singleton’s
nontransient field with an instance of the stealer. You now have a circularity: the
singleton contains the stealer and the stealer refers to the singleton.

Because the singleton contains the stealer, the stealer’s readResolve method
runs first when the singleton is deserialized. As a result, when the stealer’s
readResolve method runs, its instance field still refers to the partially
deserialized (and as yet unresolved) singleton.

The stealer’s readResolve method copies the reference from its instance field
into a static field, so that the reference can be accessed after the readResolve
method runs. The method then returns a value of the correct type for the field in
which it’s hiding. If it didn’t do this, the VM would throw a ClassCastException
when the serialization system tried to store the stealer reference into this field.

To make this concrete, consider the following broken singleton:

// Broken singleton - has nontransient object reference field!
public class Elvis implements Serializable {

public static final Elvis INSTANCE = new Elvis();
private Elvis() { }

private String[] favoriteSongs =
{ "Hound Dog", "Heartbreak Hotel" };

public void printFavorites() {
System.out.println(Arrays.toString(favoriteSongs));

}

private Object readResolve() throws ObjectStreamException {
return INSTANCE;

}
}

CHAPTER 11 SERIALIZATION310

Here is a “stealer” class, constructed as per the description above:

public class ElvisStealer implements Serializable {
static Elvis impersonator;
private Elvis payload;

private Object readResolve() {
// Save a reference to the "unresolved" Elvis instance
impersonator = payload;

// Return an object of correct type for favorites field
return new String[] { "A Fool Such as I" };

 }
private static final long serialVersionUID = 0;

}

Finally, here is an ugly program that deserializes a handcrafted stream to produce
two distinct instances of the flawed singleton. The deserialize method is omitted
from this program because it’s identical to the one on page 303:

public class ElvisImpersonator {
// Byte stream could not have come from real Elvis instance!
private static final byte[] serializedForm = new byte[] {
(byte)0xac, (byte)0xed, 0x00, 0x05, 0x73, 0x72, 0x00, 0x05,
0x45, 0x6c, 0x76, 0x69, 0x73, (byte)0x84, (byte)0xe6,
(byte)0x93, 0x33, (byte)0xc3, (byte)0xf4, (byte)0x8b,
0x32, 0x02, 0x00, 0x01, 0x4c, 0x00, 0x0d, 0x66, 0x61, 0x76,
0x6f, 0x72, 0x69, 0x74, 0x65, 0x53, 0x6f, 0x6e, 0x67, 0x73,
0x74, 0x00, 0x12, 0x4c, 0x6a, 0x61, 0x76, 0x61, 0x2f, 0x6c,
0x61, 0x6e, 0x67, 0x2f, 0x4f, 0x62, 0x6a, 0x65, 0x63, 0x74,
0x3b, 0x78, 0x70, 0x73, 0x72, 0x00, 0x0c, 0x45, 0x6c, 0x76,
0x69, 0x73, 0x53, 0x74, 0x65, 0x61, 0x6c, 0x65, 0x72, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x01,
0x4c, 0x00, 0x07, 0x70, 0x61, 0x79, 0x6c, 0x6f, 0x61, 0x64,
0x74, 0x00, 0x07, 0x4c, 0x45, 0x6c, 0x76, 0x69, 0x73, 0x3b,
0x78, 0x70, 0x71, 0x00, 0x7e, 0x00, 0x02
};
public static void main(String[] args) {

// Initializes ElvisStealer.impersonator and returns
// the real Elvis (which is Elvis.INSTANCE)
Elvis elvis = (Elvis) deserialize(serializedForm);
Elvis impersonator = ElvisStealer.impersonator;

elvis.printFavorites();
impersonator.printFavorites();

}
}

ITEM 77: FOR INSTANCE CONTROL, PREFER ENUM TYPES TO READRESOLVE 311

Running this program produces the following output, conclusively proving that
it’s possible to create two distinct Elvis instances (with different tastes in music):

[Hound Dog, Heartbreak Hotel]
[A Fool Such as I]

You could fix the problem by declaring the favorites field transient, but
you’re better off fixing it by making Elvis a single-element enum type (Item 3).
Historically, the readResolve method was used for all serializable instance-con-
trolled classes. As of release 1.5, this is no longer the best way to maintain
instance control in a serializable class. As demonstrated by the ElvisStealer
attack, this technique is fragile and demands great care.

If instead you write your serializable instance-controlled class as an enum,
you get an ironclad guarantee that there can be no instances besides the declared
constants. The JVM makes this guarantee, and you can depend on it. It requires no
special care on your part. Here’s how our Elvis example looks as an enum:

// Enum singleton - the preferred approach
public enum Elvis {

INSTANCE;
private String[] favoriteSongs =

{ "Hound Dog", "Heartbreak Hotel" };
public void printFavorites() {

System.out.println(Arrays.toString(favoriteSongs));
}

}

The use of readResolve for instance control is not obsolete. If you have to
write a serializable instance-controlled class whose instances are not known at
compile time, you will not be able to represent the class as an enum type.

The accessibility of readResolve is significant. If you place a readResolve
method on a final class, it should be private. If you place a readResolve method
on a nonfinal class, you must carefully consider its accessibility. If it is private, it
will not apply to any subclasses. If it is package-private, it will apply only to sub-
classes in the same package. If it is protected or public, it will apply to all sub-
classes that do not override it. If a readResolve method is protected or public and
a subclass does not override it, deserializing a serialized subclass instance will
produce a superclass instance, which is likely to cause a ClassCastException.

To summarize, you should use enum types to enforce instance control invari-
ants wherever possible. If this is not possible and you need a class to be both seri-
alizable and instance-controlled, you must provide a readResolve method and
ensure that all of the class’s instance fields are either primitive or transient.

CHAPTER 11 SERIALIZATION312

Item 78: Consider serialization proxies instead of serialized
instances

As mentioned in Item 74 and discussed throughout this chapter, the decision to
implement Serializable increases the likelihood of bugs and security problems,
because it causes instances to be created using an extralinguistic mechanism in
place of ordinary constructors. There is, however, a technique that greatly reduces
these risks. This technique is known as the serialization proxy pattern.

The serialization proxy pattern is reasonably straightforward. First, design a
private static nested class of the serializable class that concisely represents the log-
ical state of an instance of the enclosing class. This nested class, known as the
serialization proxy, should have a single constructor, whose parameter type is the
enclosing class. This constructor merely copies the data from its argument: it need
not do any consistency checking or defensive copying. By design, the default seri-
alized form of the serialization proxy is the perfect serialized form of the enclos-
ing class. Both the enclosing class and its serialization proxy must be declared to
implement Serializable.

For example, consider the immutable Period class written in Item 39 and
made serializable in Item 76. Here is a serialization proxy for this class. Period is
so simple that its serialization proxy has exactly the same fields as the class:

// Serialization proxy for Period class
private static class SerializationProxy implements Serializable {
 private final Date start;
 private final Date end;

 SerializationProxy(Period p) {
 this.start = p.start;
 this.end = p.end;
 }

 private static final long serialVersionUID =
 234098243823485285L; // Any number will do (Item 75)
}

Next, add the following writeReplace method to the enclosing class. This
method can be copied verbatim into any class with a serialization proxy:

// writeReplace method for the serialization proxy pattern
private Object writeReplace() {
 return new SerializationProxy(this);
}

ITEM 78: CONSIDER SERIALIZATION PROXIES INSTEAD OF SERIALIZED INSTANCES 313

The presence of this method causes the serialization system to emit a Serializa-
tionProxy instance instead of an instance of the enclosing class. In other words,
the writeReplace method translates an instance of the enclosing class to its seri-
alization proxy prior to serialization.

With this writeReplace method in place, the serialization system will never
generate a serialized instance of the enclosing class, but an attacker might fabri-
cate one in an attempt to violate the class’s invariants. To guarantee that such an
attack would fail, merely add this readObject method to the enclosing class:

// readObject method for the serialization proxy pattern
private void readObject(ObjectInputStream stream)
 throws InvalidObjectException {
 throw new InvalidObjectException("Proxy required");
}

Finally, provide a readResolve method on the SerializationProxy class
that returns a logically equivalent instance of the enclosing class. The presence of
this method causes the serialization system to translate the serialization proxy back
into an instance of the enclosing class upon deserialization.

This readResolve method creates an instance of the enclosing class using
only its public API, and therein lies the beauty of the pattern. It largely eliminates
the extralinguistic character of serialization, because the deserialized instance is
created using the same constructors, static factories, and methods as any other
instance. This frees you from having to separately ensure that deserialized
instances obey the class’s invariants. If the class’s static factories or constructors
establish these invariants, and its instance methods maintain them, you’ve ensured
that the invariants will be maintained by serialization as well.

Here is the readResolve method for Period.SerializationProxy above:

// readResolve method for Period.SerializationProxy
private Object readResolve() {

return new Period(start, end); // Uses public constructor
}

Like the defensive copying approach (page 306), the serialization proxy
approach stops the bogus byte-stream attack (page 303) and the internal field theft
attack (page 305) dead in their tracks. Unlike the two previous approaches, this
one allows the fields of Period to be final, which is required in order for the
Period class to be truly immutable (Item 15). And unlike the two previous
approaches, this one doesn’t involve a great deal of thought. You don’t have to fig-

CHAPTER 11 SERIALIZATION314

ure out which fields might be compromised by devious serialization attacks, nor
do you have to explicitly perform validity checking as part of deserialization.

There is another way in which the serialization proxy pattern is more powerful
than defensive copying. The serialization proxy pattern allows the deserialized
instance to have a different class from the originally serialized instance. You
might not think that this would be useful in practice, but it is.

Consider the case of EnumSet (Item 32). This class has no public constructors,
only static factories. From the client’s perspective, they return EnumSet instances,
but in fact, they return one of two subclasses, depending on the size of the under-
lying enum type (Item 1, page 7). If the underlying enum type has sixty-four or
fewer elements, the static factories return a RegularEnumSet; otherwise, they
return a JumboEnumSet. Now consider what happens if you serialize an enum set
whose enum type has sixty elements, then add five more elements to the enum
type, and then deserialize the enum set. It was a RegularEnumSet instance when it
was serialized, but it had better be a JumboEnumSet instance once it is deserial-
ized. In fact that’s exactly what happens, because EnumSet uses the serialization
proxy pattern. In case you’re curious, here is EnumSet’s serialization proxy. It
really is this simple:

// EnumSet's serialization proxy
private static class SerializationProxy <E extends Enum<E>>

implements Serializable {
// The element type of this enum set.
private final Class<E> elementType;

// The elements contained in this enum set.
private final Enum[] elements;

SerializationProxy(EnumSet<E> set) {
elementType = set.elementType;
elements = set.toArray(EMPTY_ENUM_ARRAY); // (Item 43)

}

private Object readResolve() {
EnumSet<E> result = EnumSet.noneOf(elementType);
for (Enum e : elements)

result.add((E)e);
return result;

}
private static final long serialVersionUID =

362491234563181265L;
}

ITEM 78: CONSIDER SERIALIZATION PROXIES INSTEAD OF SERIALIZED INSTANCES 315

The serialization proxy pattern has two limitations. It is not compatible with
classes that are extendable by their clients (Item 17). Also, it is not compatible
with some classes whose object graphs contain circularities: if you attempt to
invoke a method on an object from within its serialization proxy’s readResolve
method, you’ll get a ClassCastException, as you don’t have the object yet, only
its serialization proxy.

Finally, the added power and safety of the serialization proxy pattern are not
free. On my machine, it is 14 percent more expensive to serialize and deserialize
Period instances with serialization proxies than it is with defensive copying.

In summary, consider the serialization proxy pattern whenever you find your-
self having to write a readObject or writeObject method on a class that is not
extendable by its clients. This pattern is perhaps the easiest way to robustly serial-
ize objects with nontrivial invariants.

This page intentionally left blank

317

A P P E N D I X

Items Corresponding to First Edition

First Edition
Item Number

Second Edition
Item Number, Title

1 1, Consider static factory methods instead of constructors

2 3, Enforce the singleton property with a private constructor or an
enum type

3 4, Enforce noninstantiability with a private constructor

4 5, Avoid creating unnecessary objects

5 6, Eliminate obsolete object references

6 7, Avoid finalizers

7 8, Obey the general contract when overriding equals

8 9, Always override hashCode when you override equals

9 10, Always override toString

10 11, Override clone judiciously

11 12, Consider implementing Comparable

12 13, Minimize the accessibility of classes and members

13 15, Minimize mutability

14 16, Favor composition over inheritance

15 17, Design and document for inheritance or else prohibit it

16 18, Prefer interfaces to abstract classes

17 19, Use interfaces only to define types

APPENDIX318

18 22, Favor static member classes over nonstatic

19 14, In public classes, use accessor methods, not public fields

20 20, Prefer class hierarchies to tagged classes

21 30, Use enums instead of int constants

22 21, Use function objects to represent strategies

23 38, Check parameters for validity

24 39, Make defensive copies when needed

25 40, Design method signatures carefully

26 41, Use overloading judiciously

27 43, Return empty arrays or collections, not nulls

28 44, Write doc comments for all exposed API elements

29 45, Minimize the scope of local variables

30 47, Know and use the libraries

31 48, Avoid float and double if exact answers are required

32 50, Avoid strings where other types are more appropriate

33 51, Beware the performance of string concatenation

34 52, Refer to objects by their interfaces

35 53, Prefer interfaces to reflection

36 54, Use native methods judiciously

37 55, Optimize judiciously

38 56, Adhere to generally accepted naming conventions

39 57, Use exceptions only for exceptional conditions

40 58, Use checked exceptions for recoverable conditions and runtime
exceptions for programming errors

41 59, Avoid unnecessary use of checked exceptions

First Edition
Item Number

Second Edition
Item Number, Title

ITEMS CORRESPONDING TO FIRST EDITION 319

42 60, Favor the use of standard exceptions

43 61, Throw exceptions appropriate to the abstraction

44 62, Document all exceptions thrown by each method

45 63, Include failure-capture information in detail messages

46 64, Strive for failure atomicity

47 65, Don’t ignore exceptions

48 66, Synchronize access to shared mutable data

49 67, Avoid excessive synchronization

50 69, Prefer concurrency utilities to wait and notify

51 72, Don’t depend on the thread scheduler

52 70, Document thread safety

53 73, Avoid thread groups

54 74, Implement Serializable judiciously

55 75, Consider using a custom serialized form

56 76, Write readObject methods defensively

57 77, For instance control, prefer enum types to readResolve
78, Consider serialization proxies instead of serialized instances

First Edition
Item Number

Second Edition
Item Number, Title

This page intentionally left blank

321

References

[Arnold05] Arnold, Ken, James Gosling, and David Holmes. The Java™

Programming Language, Fourth Edition. Addison-Wesley, Boston,
2005. ISBN: 0321349806.

[Asserts] Programming with Assertions. Sun Microsystems. 2002.
<http://java.sun.com/javase/6/docs/technotes/guides/language/
assert.html>

[Beck99] Beck, Kent. Extreme Programming Explained: Embrace Change.
Addison-Wesley, Reading, MA, 1999. ISBN: 0201616416.

[Beck04] Beck, Kent. JUnit Pocket Guide. O’Reilly Media, Inc., Sebastopol,
CA, 2004. ISBN: 0596007434.

[Bloch01] Bloch, Joshua. Effective Java™ Programming Language Guide.
Addison-Wesley, Boston, 2001. ISBN: 0201310058.

[Bloch05] Bloch, Joshua, and Neal Gafter. Java™ Puzzlers: Traps, Pitfalls, and
Corner Cases. Addison-Wesley, Boston, 2005. ISBN: 032133678X.

[Bloch06] Bloch, Joshua. Collections. In The Java™ Tutorial: A Short Course on
the Basics, Fourth Edition. Sharon Zakhour et al. Addison-Wesley,
Boston, 2006. ISBN: 0321334205. Pages 293–368. Also available as
<http://java.sun.com/docs/books/tutorial/collections/index.html>.

[Bracha04] Bracha, Gilad. Generics in the Java Programming Language. 2004.
<http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf>

http://java.sun.com/javase/6/docs/technotes/guides/language/assert.html
http://java.sun.com/javase/6/docs/technotes/guides/language/assert.html
http://java.sun.com/docs/books/tutorial/collections/index.html
http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf

REFERENCES322

[Burn01] Burn, Oliver. Checkstyle. 2001–2007.
<http://checkstyle.sourceforge.net>

[Collections] The Collections Framework. Sun Microsystems. March 2006.
<http://java.sun.com/javase/6/docs/technotes/guides/collections/
index.html>

[Gafter07] Gafter, Neal. A Limitation of Super Type Tokens. 2007.
<http://gafter.blogspot.com/2007/05/
limitation-of-super-type-tokens.html>

[Gamma95] Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, MA, 1995. ISBN: 0201633612.

[Goetz06] Goetz, Brian, with Tim Peierls et al. Java Concurrency in Practice.
Addison-Wesley, Boston, 2006. ISBN: 0321349601.

[Gong03] Gong, Li, Gary Ellison, and Mary Dageforde. Inside Java™ 2
Platform Security, Second Edition. Addison-Wesley, Boston, 2003.
ISBN: 0201787911.

[HTML401] HTML 4.01 Specification. World Wide Web Consortium.
December 1999.
<http://www.w3.org/TR/1999/REC-html401-19991224/>

[Jackson75] Jackson, M. A. Principles of Program Design. Academic Press,
London, 1975. ISBN: 0123790506.

[Java5-feat] New Features and Enhancements J2SE 5.0. Sun Microsystems.
2004.
<http://java.sun.com/j2se/1.5.0/docs/relnotes/features.html>

[Java6-feat] Java™ SE 6 Release Notes: Features and Enhancements. Sun
Microsystems. 2008.
<http://java.sun.com/javase/6/webnotes/features.html>

http://www.w3.org/TR/1999/REC-html401-19991224/
http://java.sun.com/j2se/1.5.0/docs/relnotes/features.html
http://java.sun.com/javase/6/webnotes/features.html
http://checkstyle.sourceforge.net
http://java.sun.com/javase/6/docs/technotes/guides/collections/index.html
http://java.sun.com/javase/6/docs/technotes/guides/collections/index.html
http://gafter.blogspot.com/2007/05/limitation-of-super-type-tokens.html
http://gafter.blogspot.com/2007/05/limitation-of-super-type-tokens.html

REFERENCES 323

[JavaBeans] JavaBeans™ Spec. Sun Microsystems. March 2001.
<http://java.sun.com/products/javabeans/docs/spec.html>

[Javadoc-5.0] What’s New in Javadoc 5.0. Sun Microsystems. 2004.
<http://java.sun.com/j2se/1.5.0/docs/guide/javadoc/
whatsnew-1.5.0.html>

[Javadoc-guide] How to Write Doc Comments for the Javadoc Tool. Sun
Microsystems. 2000–2004.
<http://java.sun.com/j2se/javadoc/writingdoccomments/
index.html>

[Javadoc-ref] Javadoc Reference Guide. Sun Microsystems. 2002–2006.
<http://java.sun.com/javase/6/docs/technotes/tools/solaris/
javadoc.html>
<http://java.sun.com/javase/6/docs/technotes/tools/windows/
javadoc.html>

[JavaSE6] Java™ Platform, Standard Edition 6 API Specification. Sun
Microsystems. March 2006.
<http://java.sun.com/javase/6/docs/api/>

[JLS] Gosling, James, Bill Joy, and Guy Steele, and Gilad Bracha. The
Java™ Language Specification, Third Edition. Addison-Wesley,
Boston, 2005. ISBN: 0321246780.

[Kahan91] Kahan, William, and J. W. Thomas. Augmenting a Programming
Language with Complex Arithmetic. UCB/CSD-91-667, University
of California, Berkeley, 1991.

[Knuth74] Knuth, Donald. Structured Programming with go to Statements. In
Computing Surveys 6 (1974): 261–301.

[Langer08] Langer, Angelika. Java Generics FAQs — Frequently Asked Ques-
tions. 2008.
<http://www.angelikalanger.com/GenericsFAQ/
JavaGenericsFAQ.html>

http://www.angelikalanger.com/GenericsFAQ/JavaGenericsFAQ.html
http://www.angelikalanger.com/GenericsFAQ/JavaGenericsFAQ.html
http://java.sun.com/products/javabeans/docs/spec.html
http://java.sun.com/j2se/1.5.0/docs/guide/javadoc/whatsnew-1.5.0.html
http://java.sun.com/j2se/1.5.0/docs/guide/javadoc/whatsnew-1.5.0.html
http://java.sun.com/j2se/javadoc/writingdoccomments/index.html
http://java.sun.com/j2se/javadoc/writingdoccomments/index.html
http://java.sun.com/javase/6/docs/technotes/tools/solaris/javadoc.html
http://java.sun.com/javase/6/docs/technotes/tools/solaris/javadoc.html
http://java.sun.com/javase/6/docs/technotes/tools/windows/javadoc.html
http://java.sun.com/javase/6/docs/technotes/tools/windows/javadoc.html
http://java.sun.com/javase/6/docs/api/

REFERENCES324

[Lea00] Lea, Doug. Concurrent Programming in Java™: Design Principles
and Patterns, Second Edition, Addison-Wesley, Boston, 2000.
ISBN: 0201310090.

[Lieberman86] Lieberman, Henry. Using Prototypical Objects to Implement
Shared Behavior in Object-Oriented Systems. In Proceedings of
the First ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications, pages 214–223, Portland,
September 1986. ACM Press.

[Liskov87] Liskov, B. Data Abstraction and Hierarchy. In Addendum to the
Proceedings of OOPSLA ‘87 and SIGPLAN Notices, Vol. 23,
No. 5: 17–34, May 1988.

[Meyers98] Meyers, Scott. Effective C++, Second Edition: 50 Specific Ways to
Improve Your Programs and Designs. Addison-Wesley, Reading,
MA, 1998. ISBN: 0201924889.

[Naftalin07] Naftalin, Maurice, and Philip Wadler. Java Generics and
Collections. O’Reilly Media, Inc., Sebastopol, CA, 2007. ISBN:
0596527756.

[Parnas72] Parnas, D. L. On the Criteria to Be Used in Decomposing Systems
into Modules. In Communications of the ACM 15 (1972): 1053–
1058.

[Posix] 9945-1:1996 (ISO/IEC) [IEEE/ANSI Std. 1003.1 1995 Edition]
Information Technology—Portable Operating System Interface
(POSIX)—Part 1: System Application: Program Interface (API) C
Language] (ANSI), IEEE Standards Press, ISBN: 1559375736.

[Pugh01] The “Double-Checked Locking is Broken” Declaration. Ed.
William Pugh. University of Maryland. March 2001.
<http://www.cs.umd.edu/~pugh/java/memoryModel/
DoubleCheckedLocking.html>

http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html
http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html

REFERENCES 325

[Serialization] Java™ Object Serialization Specification. Sun Microsystems.
March 2005.
<http://java.sun.com/javase/6/docs/platform/serialization/spec/
serialTOC.html>

[Sestoft05] Sestoft, Peter. Java Precisely, Second Edition. The MIT Press,
Cambridge, MA, 2005. ISBN: 0262693259.

[Smith62] Smith, Robert. Algorithm 116 Complex Division.
In Communications of the ACM, 5.8 (August 1962): 435.

[Snyder86] Snyder, Alan. Encapsulation and Inheritance in Object-Oriented
Programming Languages. In Object-Oriented Programming Sys-
tems, Languages, and Applications Conference Proceedings, 38–
45, 1986. ACM Press.

[Thomas94] Thomas, Jim, and Jerome T. Coonen. Issues Regarding Imaginary
Types for C and C++. In The Journal of C Language Translation,
5.3 (March 1994): 134–138.

[ThreadStop] Why Are Thread.stop, Thread.suspend, Thread.resume and
Runtime.runFinalizersOnExit Deprecated? Sun Microsystems.
1999.
<http://java.sun.com/j2se/1.4.2/docs/guide/misc/
threadPrimitiveDeprecation.html>

[Viega01] Viega, John, and Gary McGraw. Building Secure Software: How to
Avoid Security Problems the Right Way. Addison-Wesley, Boston,
2001. ISBN: 020172152X.

[W3C-validator]W3C Markup Validation Service. World Wide Web Consortium.
2007.
<http://validator.w3.org/>

[Wulf72] Wulf, W. A Case Against the GOTO. In Proceedings of the 25th
ACM National Conference 2 (1972): 791–797.

http://java.sun.com/javase/6/docs/platform/serialization/spec/serialTOC.html
http://java.sun.com/javase/6/docs/platform/serialization/spec/serialTOC.html
http://java.sun.com/j2se/1.4.2/docs/guide/misc/threadPrimitiveDeprecation.html
http://java.sun.com/j2se/1.4.2/docs/guide/misc/threadPrimitiveDeprecation.html
http://validator.w3.org/

This page intentionally left blank

327

Index

Symbols
% remainder operator, 215
%n newline specifier for printf, 151
& HTML metacharacter, 205
+ string concatenation operator, 227
++ increment operator, 263
: for-each iterator, 212
< > generic type parameters, 109
< HTML metacharacter, 204–205
< relational operator, 65, 222
<?> unbounded wildcard type, 113
== operator, 6, 42–43, 147, 149, 177, 222–223
> HTML metacharacter, 205
> relational operator, 65
| OR operator, 159

A
abstract class

adding value components to, 41
designing for inheritance, 91
evolution of, vs. interfaces, 97
example

skeletal implementation, 96
tagged class replacement, 101

vs. interfaces, 93–97
noninstantiability and, 19
for skeletal implementations, 91, 94
from tagged class, 101

Abstract Factory pattern, 15
AbstractList, 34, 88, 94
AbstractMap, 34, 94
AbstractSequentialList, 250
AbstractSet, 34, 94
access level, 67–70

default, 4
of readResolve, 311

rules of thumb for, 68–69
of static member classes, 106

AccessibleObject.setAccessible, 17
accessor methods, 71

defensive copies and, 73, 186
example

defensive copies, 186
immutability, 74

for failure-capture data, 245, 255
immutability and, 73
naming conventions for, 239–240
for toString data, 53
vs. public fields, 71–72, 102

actual type parameter, 109, 115
Adapter pattern, 8, 22, 95, 107
aggregate types vs. strings, 224
alien method, 121, 265, 268
AnnotatedElement, 146
annotation
Immutable, 279
NotThreadSafe, 279
Override, 30, 34–44, 176–178
Retention, 169–170, 172–173, 207
SuppressWarnings, 116–118
Target, 169–170, 172–173, 207
ThreadSafe, 279

annotations, 147–180
API, 169–175

bounded type tokens and, 145
example, 171, 173–174
as typesafe heterogeneous container, 146

array parameters, 174
bounded type tokens and, 145
code semantics and, 171
documenting, 207
meta, 170
parameters, 172

328 INDEX

annotations (contd.)
types, 169
vs. naming patterns, 169–175
See also marker annotations

anonymous class, 106–108
in adapters, 95
as concrete strategy class, 104
example, 30, 95
finalizer guardian and, 30
uses and limitations, 108

antipattern, 2
busy wait, 286
constant interface, 98
empty catch block, 258
exceptions for flow control, 241
excessive string concatenation, 227
floating point for monetary calculation, 218
int enum, 147
null return for empty array, 201–202
ordinal abuse, 158, 161
serializable inner class, 294
string overuse, 224
tagged class, 100, 102
unsynchronized concurrent access, 259–264
wildcard types as return types, 137

API, 4
Collections Framework, 7
documenting, 203–208
Java Database Connectivity (JDBC), 7
object serialization, 289
provider registration, 8
service access, 8
toString return values as defacto, 53
unintentionally instantiable class in, 19
See also exported API

API design
access levels and, 68
bounded wildcard types and, 134–141
callbacks and, 26
constant interface pattern and, 98
constructors vs. static factories, 6
documentation comments and, 208
exceptions and, 242, 244–245
information hiding and, 234
inheritance and, 87–92
member class and, 108
orthogonality in, 189
vs. performance, 234

performance consequences of, 235
serialization and, 69, 289–290
static factories and, 18
synchronized modifier and, 278

API elements, 4
ArithmeticException, 249
ArrayIndexOutOfBoundsException, 162–

163, 241
ArrayList, 117, 194
Arrays, 19, 43, 48, 198–200
arrays

covariant, 119
defensive copying of, 70, 187
empty, 201

and immutability, 202
vs. null as return value, 201–202

generic creation errors, 119–120
to implement generics, 125–127
vs. lists, 119–123
nonempty and mutability, 70, 187
processing elements of, 241
in public fields, 70
reified, 119
safe access, 70

ArrayStoreException, 119–120
AssertionError, 19, 34, 152, 182, 246
assertions, 182
asSubclass, 146
atomic reference, 292–293
atomicity, 259

concurrent collections and, 273
failure, 183, 256–257
increment operator and, 263
public locks and, 280
synchronization and, 260–262

AtomicLong, 263
AtomicReference, 142, 293
autoboxing, 22, 221

method overloading and, 194
performance and, 22, 223

B
backward compatibility, 79, 299

See also compatibility
base class, 229
BigDecimal, 52, 64, 73, 78–79, 219–220
compareTo inconsistent with equals, 64

INDEX 329

for monetary calculations, 218–220
performance and, 219

BigInteger, 52, 73, 76–79, 295
constructor, 6
documentation, 182, 278

binary compatibility, 98, 108, 253, 291
See also compatibility

binary floating-point arithmetic, 218
bit fields vs. enum sets, 159–160
BitSet, 77
blocking operation, 274
BlockingQueue, 274
bogus byte stream attack, 303, 313
Boolean, 5–6, 20
boolean, 5

vs. enum types, 190
Boolean.valueOf, 6
bounded type parameter, 115, 128, 145
bounded type token, 145, 162, 167, 172
bounded wildcard type, 16, 114–115, 130,

135–136, 139, 145, 167
increasing API flexibility, 134–141

boxed primitive, 5
vs. primitive type, 221–223

breaking initialization circularities, 282
Builder, 15
Builder pattern, 11–16, 190
busy wait, 286

C
caches, 26
Calendar, 21–22
Callable, 272
callback, 85, 266
callback framework, 85
canonical form, 43
capabilities vs. strings, 224–225
CaseInsensitiveString, 43
casts
asSubclass, 146
automatic, 109
Class.cast, 144
compiler generated, 109, 112, 120
dynamic, 144, 146
generics and, 109
invisible, 111

manual, 111
unchecked warnings, 116–118, 127, 132,

144, 161–162
catch block, empy, 258
chaining-aware exceptions, 251
CharBuffer, 196
CharSequence, 196
checked exceptions, 244

accessor methods in, 245, 255
avoiding, 246–247
documenting, 252
failure atomicity and, 256
ignoring, 258
making unchecked, 247

checkedList, 145
checkedMap, 145
checkedSet, 145
circularities

initialization, 282
object graph, and serialization, 315
serialization attacks and, 309

Class, 16, 67–108, 142–146, 167, 230–231
class literals, 114, 172
Class.asSubclass, 146
Class.cast, 144
Class.class, 167
Class.newInstance, 16, 231
class-based framework, 229
ClassCastException, 42, 256

annotations and, 173
Comparable and, 62–63, 183
generics and, 110–112, 116–120, 123, 126–

128
serialization and, 309, 311, 315
typesafe heterogeneous containers and, 144–

146
classes

access levels of, 68
anonymous

See anonymous class
base, 229
composition, 10, 81–86
designing for inheritance, 87–92
documenting, 203, 206

for inheritance, 87–88
thread safety of, 278–281

evolution of, 290

330 INDEX

classes (contd.)
generic, 109
helper, for shortening parameter lists, 190
hierarchy of, 93, 101–102

combinatorial explosion in, 94
immutable

See immutability
inheritance, 81–86
instances of, 3
levels of thread safety, 278–279
members, 3
minimizing accessibility of, 67–70
naming conventions, 237–239
nested

See nested classes
noninstantiable, 7
nonserializable, with serializable subclass,

292
singletons

See singletons
stateful, 292
stateless, 103
SuppressWarnings annotation and, 117
tagged, 100–102
unintentionally instantiable, 19
unrelated, 64, 107, 195
utility

See utility classes
See also individual class names

clients, 4
clone, 33, 54–61

as a constructor, 57, 90
defensive copies and, 70, 185–186, 306
example

defensive copies, 70
implementing, 55, 57–59

extralinguistic mechanisms, 54, 61
general contract, 54–55
immutable objects and, 76
incompatibility with final fields, 57
nonfinal methods and, 60, 90
references to mutable objects and, 56–60
vs. copy constructor, 61

Cloneable, 54–61, 90, 195, 246
alternatives to, 61
behavior of, 54
designing for inheritance and, 90
example, 57–58

extralinguistic mechanisms, 54, 61
implementing, 60
purpose of, 54

CloneNotSupportedException, 54, 60,
246

@code tag, 204
Collection
compareTo and, 64
conversion constructors and, 61
empty array from, 202
equals and, 42
wildcard types and, 114, 135–136

Collections, 7, 19, 145
immutable, 131, 160, 202
synchronization and, 274, 279–280

collections
change to typed arrays, 202
empty, vs. null, 202

Collections Framework API, 7
combinatorial explosion, 94
companion class, mutable, 77
Comparable, 62–66, 93, 132

as consumers in PECS, 138
mutual comparability and, 133
recursive type bounds and, 132
See also compareTo

Comparator, 65
anonymous class and, 108
autoboxing and, 221–222
in implementing Comparable, 65
example, 74, 103–105
instance, 108
overriding equals and, 43

compare
See Comparator

compareTo
consistent with equals, 64
differences from equals, 63
example, 65–66, 304

using, 21, 184–185, 219, 306
general contract for, 62–64
instructions for writing, 64–66
See also Comparable

compatibility, 41, 68, 98, 111, 290, 301
backward, 79, 299
binary, 98, 108, 253, 291
forward, 299

INDEX 331

migration, 112
semantic, 291
source, 253

compiler-generated casts, 109, 111–112, 120
compilers, generics-aware, 111
compile-time exception checking, 16
compile-time type checking, 110, 119, 230
compile-time type safety, 123, 126
Component, 235
composition, 10, 83

vs. inheritance, 81–86
computation ordering, 256
concrete strategy, 103
concurrency, 259–288

documenting method behavior for, 278–281
internal synchronization and, 270
non-blocking control, 270
utilities, 217, 273–277

concurrent collections, 268
ConcurrentHashMap, 273–274, 278, 280
ConcurrentLinkedQueue, 280
ConcurrentMap, 273–274
ConcurrentModificationException,

248–249, 257, 267
conditionally thread-safe classes, 278

denial-of-service attack and, 280
documenting, 279, 281

Connection, 8, 28–29
consistency requirement

in equals contract, 34, 41
in hashCode contract, 45
in compareTo contract, 63

consistency, data
See data consistency

consistent with equals, 64
constant interface, 98
constant utility class, 99
constants, 70

enum types instead of, 147–157
in interfaces, 98–99
naming conventions for, 238
string, vs. enum types, 148

constant-specific class bodies, 152
constant-specific method implementations,

152–154
constructors, 4, 20

API design and, 6
BigInteger, 6
calling overridable methods in, 89, 307
checking parameters of, 183, 302
clone as a, 57
conversion, 61
copy, 61, 76
default, 19
defensive copying and, 185
deserialization as, 290
documenting self-use, 87
enforcing noninstantiability with, 19
enforcing singleton property with, 17–18
establishing invariants, 75, 80
example

enforcing noninstantiability, 19
in singletons, 17, 308
use of overridable methods in, 89
in immutable class, 184–185

overloading, 193
parameterless, 19, 292
private

enforcing noninstantiability with, 19
enforcing singletons with, 17–18

readObject as a, 302
reflection and, 230
replacing with static factory, 5–10
for serialization proxies, 312
signature of, 6
example

in singletons, 17
SuppressWarnings annotation and, 117

consumer threads, 274
convenience methods, 189
conversion constructors and factories, 61
cooperative thread termination, 261
copy constructors and factories, 61, 76
CopyOnWriteArrayList, 268–269
corrupted objects, 28, 257, 260
CountDownLatch, 274–275
covariant arrays, 119
covariant return types, 56
creating objects, 5–31

performance and, 21
custom serialized forms, 289, 295–301

example, 298
CyclicBarrier, 274

332 INDEX

D
data consistency

in builder pattern, 13
maintaining in face of failure, 256–257
synchronization, 259–264
unreliable resources and, 41

data corruption, 28, 233, 257, 260
Date, 20–21, 41, 184–186, 302, 304
deadlock, 265–270

resource ordering, 300
thread starvation, 276

Decorator pattern, 85
default access

See package-private
default constructors, 19
default serialized forms

criteria for, 295
disadvantages of, 297
initial values of transient fields and,300
transient modifier and, 297

defaultReadObject, 299–300, 304
example, 293, 298, 304, 306

defaultWriteObject, 299–300
example, 294, 298, 300

defensive copies, 184–188, 307, 312
of arrays, 187
clone and, 185–186, 306
deserialization and, 302–303, 306
immutable objects and, 76
of mutable input parameters, 185–186
of mutable internal fields, 186
vs. object reuse, 23
performance and, 187
readObject and, 302–303, 306

degenerate class, 71
DelayQueue, 128
delegation, 85
denial-of-service attacks, 280
deserialization, 289–315

as a constructor, 290
flexible return class for, 314
garbage collection and, 308
overridable methods and, 90
preventing completion of, 304
singletons and, 18, 308–311

destroying objects, 24–31
detail messages, 254

Dimension, 72, 235
distinguished return values, 243
doc comments, 203
documenting, 203–208

annotation types, 207
conditional thread safety, 279
enum types, 207, 279
exceptions, 252–253
generics, 206
for inheritance, 87–88
lock objects, 281
methods, 203
multiline code examples, 205
object state, 257
parameter restrictions, 181
postconditions, 203
preconditions, 203, 252
required locks, 279–280
return value of toString, 52
self-use of overridable methods, 87, 92
serialized fields, 296
side effects, 203
static factories, 10
SuppressWarnings annotation and, 118
synchronized modifier and, 278
thread safety, 203, 278–281
transfer of ownership, 187
writeObject for serialization, 299
See also Javadoc

Double, 43, 47, 65
double, when to avoid, 218–220
double-check idiom, 283–285
Driver, 8
DriverManager, 8
dynamic casts, 144, 146

E
effectively immutable objects, 263
eliminating self-use, 92
eliminating unchecked warnings, 116–118
empty arrays

immutability of, 202
vs. null as return value, 201–202

empty catch block, 258
emptyList, 202
emptyMap, 202
emptySet, 202

INDEX 333

EmptyStackException, 256
encapsulation, 67, 234

broken by inheritance, 81, 88
broken by serialization, 290
of data fields, 71

enclosing instances, 106
anonymous class and, 108
finalizer guardian and, 30
local class and, 108
nonstatic member class and, 106
serialization and, 294

enum maps vs. ordinals, 161–164
enum sets

immutability and, 160
vs. bit fields, 159–160

enum types, 147–180
adding behaviors to, 149–151
collection view of, 107
constant-specific class body and, 152
constant-specific method implementations

and, 152
documenting, 207, 279
enforcing singletons with, 17–18
equals and, 34
immutability of, 150
iterating over, 107
as member class, 151
for Strategy, 155
switch statements and, 154, 156
as top-level class, 151
toString and, 151–154
vs. booleans, 190
vs. int constants, 147–157
vs. readResolve, 308–311
vs. string constants, 148, 224

enumerated types, 147
EnumSet, 7, 159–160, 200, 314
equals, 6, 33–44

accidental overloading of, 44, 176–177
canonical forms and, 43
enum types and, 34
example

accidental overloading, 44
general contract and, 42
general contract of, 36, 40, 42, 96
violation of general contract, 35, 37–38

extending an abstract class and, 41
extending an instantiable class and, 38

general contract for, 34–42
how to write, 42
Override annotation and, 176–177
overriding hashCode and, 44–50
unreliable resources and, 41
when to override, 33–34

equivalence relations, 34
erasure, 119
Error, 244
errors, 244

generic array creation, 119–120
See also individual error names

example class
AbstractFoo, 292
AbstractMapEntry, 96
BasicOperation, 165
Bigram, 176
BogusPeriod, 303
CaseInsensitiveString, 35, 43, 65
Champagne, 192
Circle, 101
CollectionClassifier, 191
ColorPoint, 37, 40
Comparator, 104
Complex, 74, 78
CounterPoint, 39
Degree, 206
Elvis, 17–18, 308–309, 311
ElvisImpersonator, 310
ElvisStealer, 310
Ensemble, 158
Entry, 58, 296, 298
ExtendedOperation, 166
Favorites, 142–143
FieldHolder, 283
Figure, 100
Foo, 30, 293
ForwardingSet, 84, 265
Function, 122
HashTable, 57–58
Herb, 161
HigherLevelException, 251
Host, 105
InstrumentedHashSet, 81
InstrumentedSet, 84
Key, 225
MutablePeriod, 304
MyIterator, 107

334 INDEX

example class (contd.)
MySet, 107
Name, 295
NutritionFacts, 11–12, 14
NutritionFacts.Builder, 15–16
ObservableSet, 265
Operation, 152–153, 157, 165
OrchestraSection, 207
PayrollDay, 154, 156
Period, 184, 302
Person, 20–21
Phase, 162–163
PhoneNumber, 45
PhysicalConstants, 98–99
Planet, 149
Point, 37, 71
Provider, 8
Rectangle, 102
RunTests, 171
Sample, 170
Sample2, 172
SerializationProxy, 312, 314
Service, 8
Services, 8–9
SetObserver, 266
Shape, 101
SingerSongwriter, 94
SlowCountDownLatch, 286
SparklingWine, 192
Square, 102
Stack, 24–26, 56, 124–125, 134
StopThread, 260–262
StringLengthComparator, 103–104
StringList, 296, 298
StrLenCmp, 105
Sub, 90
Super, 89
TemperatureScale, 190
Text, 159–160
ThreadLocal, 225–226
UnaryFunction, 131
Unbelievable, 222
UtilityClass, 19
WeightTable, 150
Wine, 192
WordList, 62

Exception, 172, 244–245, 250–252

exceptions, 241–258
API design and, 242, 244–245
avoiding, 251
avoiding checked, 246–247
chaining, 250
chaining aware, 251
checked into unchecked, 247
checked vs. unchecked, 244–245
checking, 16
commonly used, 181
compile-time checking, 16
control flow and, 242
defining methods on, 245, 255
detail messages for, 254–255
documenting, 252–253

as part of method documentation, 203–204
for validity checking, 182

failure-capture information and, 254
favor standard, 248–249
from threads, 288
ignoring, 258
performance and, 241
purpose of, 244
string representations of, 254
translation, 183, 250
uncaught, 28
uses for, 241–243
See also individual exception names

Exchanger, 274
Executor Framework, 271–272
executor services, 267, 272
ExecutorCompletionService, 271
Executors, 267, 271–272
ExecutorService, 267, 271, 274
explicit termination methods, 28–29
explicit type parameter, 137–138
exported APIs

See API design; APIs
extending classes, 81, 91

appropriateness of, 86
clone and, 55
Cloneable and, 90
compareTo and, 64
equals and, 38
private constructors and, 78
Serializable and, 90, 291

INDEX 335

skeletal implementations, 95
See also inheritance

extending interfaces, 94
Serializable and, 291

extends, 4
extensible enums, emulating, 165–168
extralinguistic mechanisms, 61

cloning, 54, 61
elimination of, 313
native methods, 209, 233
reflection, 209, 230
serialization, 290, 312–313

F
Factory Method pattern, 5
failure atomicity, 183, 256–257
failure-capture, 254–255
fields

access levels of, 68
clone and, 56
compareTo and, 65
constant, 70
constant interface pattern and, 98
default values of, 300
defensive copies of, 186
documenting, 203, 206, 296
equals and, 43
exposing, 70–71
final

See final fields
hashCode and, 47
immutability and, 73
information hiding and, 71
interface types for, 228
naming conventions for, 238, 240
protected, 88
public, 69
redundant, 43, 48
reflection and, 230
serialization and, 301
stateless classes and, 103
synthetic, 294
thread safety and, 69
transient

See transient fields
File, 44
FileInputStream, 29, 258

FileOutputStream, 29
final fields

constant interface pattern and, 98
constants and, 70, 238
defensive copies and, 306
to implement singletons, 17
incompatibility with clone, 57
incompatibility with serialization,

306
readObject and, 306
references to mutable objects and, 70

finalize, 31, 33
finalizer chaining, 30
finalizer guardian, 30
finalizers, 27–31

and garbage collection, 27
execution promptness, 27
logging in, 29
performance of, 28
persistent state and, 28
uses for, 29
vs. explicit termination methods, 28–29

Float, 43, 47, 65
float, inappropriate use of, 218–220
Flyweight pattern, 6
footprint

See space consumption
for loops

vs. for-each loops, 212–214
vs. while loops, 210

for-each loops, 212–214
formal type parameters, 109, 115
forward compatibility, 299

See also compatibility
forwarding, 83–85, 95
frameworks

callback, 85
class-based, 229
Collections, 217
interface-based, 6
nonhierarchical type, 93
object serialization, 289
service provider, 7

function objects, 103–105, 108
functional programming, 75
fundamental principles, 2

336 INDEX

G
garbage collection

finalizers and, 27
immutable objects and, 76
member classes and, 107
memory leaks and, 25
readResolve and, 308
See also space consumption

general contract, 33, 252
clone, 54
compareTo, 62
equals, 34
hashCode, 45
implementing interfaces and, 93
toString, 51

generic
array creation errors, 119–120
classes, 109
interface, 109
methods, 114–115, 122, 129–133
singleton factories, 131
static factory methods, 130
types, 109, 115, 124–128

Abstract Factory pattern and, 15
generics, 109–146

covariant return types, 56
documenting, 206
erasure and, 119
implementing atop arrays, 125–127
incompatibility with primitive types, 128
invariance of, 119
method overloading and, 195
static utility methods and, 129
subtyping rules for, 112
varargs and, 120

generics-aware compilers, 111
generification, 124
get and put principle, 136
getCause, 171, 251
grammatical naming conventions, 239–240
Graphics, 28

H
handoffs, of objects, 187
hashCode, 33, 44–50

general contract for, 45
how to write, 47

immutable objects and, 49
lazy initialization and, 49, 79
overriding equals and, 45

HashMap, 33, 45, 130, 190, 229, 279
HashSet, 33, 45, 81–82, 88, 144, 231
Hashtable, 45, 83, 86, 274
heap profiler, 26
helper classes, 106, 190
hidden constructors, 57, 90, 290, 302

See also extralinguistic mechanisms
hoisting, 261
HTML

metacharacters, 205
validity checking, 208

I
identities vs. values, 221
IllegalAccessException, 16
IllegalArgumentException, 15, 181,

248–249
IllegalStateException, 15, 28, 248–249
Image, 28–29
immutability, 73–80

advantages of, 75
annotation for, 279
canonical forms and, 43
constants and, 70, 238
copying and, 61
defensive copies and, 184, 186
disadvantage of, 76
effective, 263
empty arrays and, 202
enum sets and, 160
enum types and, 150
example, 74, 78, 184, 302
failure atomicity and, 256
functional approach and, 75
generic types and, 131
hashCode and, 49
JavaBeans and, 13
object reuse and, 20
readObject and, 302–306
rules for, 73
serialization and, 79, 302–307
static factory methods and, 77
thread safety and, 278

Immutable annotation, 279

INDEX 337

immutable, level of thread safety, 278
implementation details, 67, 81, 83, 86, 88,

250, 289–290, 295, 297
implementation inheritance, 81
implements, 4
implicit parameter checking, 183
inconsistent data, 28, 233, 257, 260, 293
inconsistent with equals, 64
IndexOutOfBoundsException, 248–249,

254–255
information hiding

See encapsulation
inheritance, 3

designing for, 88–92
of doc comments, 208
documenting for, 87–88
example, 81
fragility and, 83
hooks to facilitate, 88
implementation vs. interface, 3, 81
information hiding and, 81
locking and, 280
multiple, simulated, 96
overridable methods and, 89
prohibiting, 91
self-use of overridable methods and, 92
serialization and, 291
uses of, 85
vs. composition, 81–86
See also extending classes

@inheritDoc tag, 208
initCause, 251
initialization

to allow serializable subclasses, 292
circularities, breaking, 282
defensive copying and, 73
example, 21, 49, 210, 283, 293
of fields on deserialization, 300
incomplete, 13, 90
lazy, 22, 49, 79, 282–285
of local variables, 209
normal, 283
at object creation, 80
static, 21

initialize-on-demand holder class, 283
inner classes, 106

and serialization, 294

extending skeletal implementations with, 95
InputStream, 28
instance fields

initializing, 282–283
vs. ordinals, 158

instance-controlled classes, 6
enum types and, 17–18, 147–157
readResolve and, 308–311
singletons, 17–18
utility classes, 19

instanceof operator, 42, 114
InstantiationException, 16
int

constants, vs. enum types, 147–157
enum pattern, 147, 159
for monetary calculations, 218–220

Integer, 66, 98, 132, 195, 221–223
interface inheritance, 81
interface marker, 179–180
interface-based frameworks, 6, 93–97
interfaces, 67–108

vs. abstract classes, 93–97
access levels, 68
constant, 98–99
for defining mixins, 93
for defining types, 98–99, 179–180
documenting, 203, 206, 252
emulating extensible enums with, 165–168
enabling functionality enhancements, 94
evolving, 97
extending Serializable, 291
generic, 109
marker

See marker interfaces
mixin, 54, 93
naming conventions for, 237–239
for nonhierarchical type frameworks, 93
as parameter types, 160, 190
purpose of, 54, 98–99
referring to objects by, 228–229
vs. reflection, 230–232
restricted marker, 179
skeletal implementations and, 94–97
static methods and, 7
strategy, 104
See also individual interface names

internal field theft attack, 304–305, 313

338 INDEX

internal representation
See implementation details

internal synchronization, 270
InterruptedException, 275–276
InvalidClassException, 290, 301
InvalidObjectException, 291, 304, 307,

313
invariant (generics), 119, 134
invariants, 302–307

builders and, 15
class, 75, 86
clone and, 57
concurrency and, 263, 268, 276
constructors and, 80, 183, 292
defensive copying and, 184–188
enum types and, 311
of objects and members, 69, 71–72, 76
serialization and, 290, 292, 295–301, 313

InvocationTargetException, 171
Iterable, 214
iteration

See loops
iterators, 107, 212

J
Java Database Connectivity API, 7
Java Native Interface, 233
JavaBeans, 12–13

immutability and, 13
method-naming conventions, 239
serialization and, 289

Javadoc, 203
class comments, 253
HTML metacharacters in, 205
HTML tags in, 204
inheritance of doc comments, 208
links to architecture documents from, 208
package-level comments, 207
summary description, 205

Javadoc tags
@code, 204
@inheritDoc, 208
@literal, 205
@param, 203–204
@return, 204
@serial, 296
@serialData, 299

@throws, 181, 203–204, 252
JDBC API, 7
JNI, 233
JumboEnumSet, 7, 314

K
keySet, 22

L
lazy initialization, 22, 49, 79, 282–285

double-check idiom for, 283
lazy initialization holder class idiom,

283
libraries, 215–217
LinkedHashMap, 26, 229
LinkedList, 57
Liskov substitution principle, 40
List, 34, 42, 265, 268–269
lists vs. arrays, 119–123
@literal tag, 205
liveness

ensuring, 265–270, 276, 287
failures, 261

local classes, 106–108
local variables, 209

minimizing scope of, 209–211
naming conventions for, 238, 240

lock splitting, 270
lock striping, 270
locks

documenting, 280
finalizers and, 28
in multithreaded programs, 259–264
reentrant, 268
using private objects for, 280

logging, 29, 251
logical data representation vs. physical,

295–301
logical equality, 34
long, for monetary calculations, 218–220
loop variables, 210–212
loops

for invoking wait, 276–277
minimizing scope of variables and, 210
nested, 212–214
See also for loops; for-each loops

INDEX 339

M
Map, 34, 42, 64

defensive copies and, 187
member classes and, 107
views and, 22, 107
vs. ordinal indexing, 162

Map.Entry, 42
Map.SimpleEntry, 97
marker annotations, 170, 179
marker interfaces, 179–180
Math, 19, 206, 215
member classes, 106–108

See also static member classes
members, 3

minimizing accessibility of, 67–70
memory footprint

See space consumption
memory leaks, 24–26

See also space consumption
memory model, 73, 260, 284
meta-annotation
Documented, 169–170, 172–173, 207

meta-annotations, 170
Method, 171, 230
method overloading, 191–196

autoboxing and, 194
generics and, 195
parameters of, 193
rules for, 195
static selection among, 191

method overriding, 191–192
dynamic selection among, 191
self-use and, 92
serialization and, 307

methods, 181–208
access levels of, 68–69
accessor, vs. public fields, 71–72
adding to exception classes, 245
alien

See alien methods
checking parameters for validity, 181–183
common to all objects, 33–66
constant-specific for enum-types, 152
convenience, 189
defensive copying before parameter

checking, 185
designing signatures of, 189–190

documenting, 203–205
exceptions thrown by, 252–253
overridable, 87
thread safety of, 278–281

explicit termination, 28–29
failure atomicity and, 256–257
forwarding

See forwarding methods
generic, 114–115, 122, 129–133
invocation, reflection and, 230
naming, 10, 189, 238–239
native, 29, 233
overloading

See method overloading
overriding

See method overriding
parameter lists for, 189
private, to capture wildcard types, 140
retrofitting varargs to, 198
size, 211
state-testing, vs. distinguished return value,

243
static factory

See static factory methods
static utility, 129
SuppressWarnings annotation and, 117
varargs, 197–200
See also individual method names

migration compatibility, 112
mixin interface, 54, 93
mixing primitives and boxed primitives, 222
modify operations, state-dependent, 273
modules, 2
monetary calculations, 218
Monty Python reference, subtle, 20, 201
multiline code examples, in doc comments,

205
multiple inheritance, simulated, 96
multithreaded programming, 217
mutable companion classes, 77
mutators, 71
mutual exclusion, 259
mutually comparable, 133

N
naming conventions, 10, 129, 148, 237–240
naming patterns vs. annotations, 169–175

340 INDEX

NaN constant, 43
native methods, 29, 233
native peers, 29
natural ordering, consistent with equals, 64
nested classes, 68, 106–108

access levels of, 68
as concrete strategy classes, 105
in serialization proxy pattern, 307, 312

non-blocking concurrency control, 270
nonhierarchical type frameworks, 93
noninstantiable classes, 7, 19
non-nullity in equals contract, 41
nonreifiable types, 120, 125, 127
nonserializable class, with serializable

subclass, 292
nonstatic member classes, 106–108
normal initialization, 283
notify vs. notifyAll, 276–277
NotThreadSafe annotation, 279
NullPointerException, 25, 42–43,

248–249
autoboxing and, 222–223
compareTo and, 64
equals and, 42–43
memory management and, 25
in object construction, 57, 90, 154
with ordinal indexing, 163
validity checking and, 182–183

NumberFormatException, 249

O
Object, 33
object pools, 23
object serialization API, 289
ObjectInputStream, 79, 193, 290
ObjectInputValidation, 307
ObjectOutputStream, 79, 179, 193, 290,

307
objects, 3

avoiding reflective access, 231–232
base classes and, 229
corruption of, 28, 257
creating and destroying, 5–31
creation and performance, 21
deserializing, 289–315
effectively immutable, 263

eliminating obsolete references, 24–26
function, 108
handing off, 187
immutable

See immutability
inconsistent states of, 293
methods common to all, 33–66
process, 108
reflective access, 230
reuse, 20–23
safe publication of, 263
serializing, 289–315
string representations of, 51–53
using interfaces to refer to, 228–229
viewing in partially initialized state, 13, 90

ObjectStreamConstants, 98
Observer pattern, 265
obsolete object references, 24–26, 56, 256
open call, 269
optimizations, 234–236
== instead of equals, 42
lazy initialization, 22, 282–285
notify vs. notifyAll, 277
object reuse, 20–23
static initialization, 21–22
StringBuffer and, 227

ordinals
vs. enum maps, 161–164
vs. instance fields, 158

orthogonality in APIs, 189
OutOfMemoryError, 25, 27
OutputStream, 28
overloading

See method overloading
Override annotations, 30, 34–44, 176–178
overriding

See method overriding

P
package-private

access level, 4, 68
constructors, 77, 91

packages, naming conventions for, 237–238
@param tag, 203–204
parameter lists

of builders, 15
of constructors, 6

INDEX 341

long, 189–190
varargs and, 197–200

parameterized types, 109, 115
instanceof operator and, 114
reifiable, 120

parameterless constructors, 19, 292
parameters

checking for validity, 181–183, 302
interface types for, 228
type

See type parameters
PECS mnemonic, 136
performance, 234–236

autoboxing and, 22, 223
BigDecimal and, 219
defensive copying and, 187
enum types, 157, 160, 162
finalizers and, 27–28
for-each loops and, 212
immutable classes and, 76–77
internal concurrency control and, 280
libraries and, 216
measuring, 235
memory leaks and, 25
object creation and, 21
public locks and, 280
reflection and, 230
serialization and, 297
serialization proxy pattern and, 315
static factories and, 6
varargs and, 200
See also optimizations

performance model, 236
physical representation vs. logical content,

295–301
platform-specific facilities, using, 233
portability

of native methods, 233
thread scheduler and, 286

postconditions, 203
preconditions, 203, 252

violating, 244
primitive types, 221

vs. boxed primitives, 221–223
compareTo and, 65
equals and, 43
hashCode and, 47

incompatibility with generic types, 128
See also individual primitive types

private constructors
enforcing noninstantiability with, 19
enforcing singletons with, 17–18

private lock object, 280
process object, 108
producer-consumer queue, 274
profiling tools, 236
programming principles, 2
promptness of finalization, 27
Properties, 86
protected, 69
provider framework, 8

Q
Queue, 274

R
racy single check idiom, 284
radically different types, 194
Random, 33, 215–216, 229, 278
raw types, 109–115

class literals and, 114
instanceof operator and, 114

readObject, 296, 302–307
default serialized form and, 300
guidelines for, 307
for immutable objects, 73, 79
incompatibility with singletons, 308
overridable methods and, 90, 307
serialization proxy pattern and, 313, 315
transient fields and, 297, 299–300

readObjectNoData, 291–292
readResolve

access levels of, 91, 311
vs. enum types, 308–311
example, 308
garbage collection and, 308
for immutable objects, 79
for instance-controlled classes, 311
serialization proxy and, 313–315
for singletons, 18, 308

readUnshared, 79, 307
recipes
clone, 60

342 INDEX

recipes (contd.)
compareTo, 64–66
equals, 42
finalizer guardian, 30
generifying a class, 124–126
hashCode, 47
implementing generics atop arrays, 125–127
invoking wait, 276
noninstantiable classes, 19
readObject, 307
serialization proxies, 312–313
singletons, 17
static factory methods, 5
tagged classes to class hierarchies, 101–102
using builders, 13
See also rules

recovery code, 257
recursive type bounds, 115, 132–133
redundant fields, 43, 48
reentrant lock, 268
reference types, 3, 221
reflection, 230–232
clone methods and, 54
performance of, 230
service provider frameworks and, 232

reflective instantiation with interface access,
231

reflexivity
of compareTo, 64
of equals, 34–35

RegularEnumSet, 7, 314
reified, 119
remote procedure calls, reflection and, 230
resource-ordering deadlock, 300
resources

insufficient, 244–245
locked, and finalizers, 28
releasing, 29

restricted marker interface, 179
@return tag, 204
return statements, SuppressWarnings

annotation and, 117
return types, wildcard types and, 137
return values, interface types for, 228
rogue object reference attack, 304, 307
RoundingMode, 151

RPCs, reflection and, 230
rules

accessibility, 68–69, 106
choosing exception type, 244–245
choosing wildcard types, 136
immutability, 73
mapping domains to package names, 237
method overloading, 195
optimization, 234
subtyping, for generics, 112
type inference, 137
writing doc comments, 203–208

Runnable, 108, 272
runnable threads, number of, 286
Runtime, 28
runtime exceptions

See unchecked exceptions
runtime type safety, 112, 123

S
safe array access, 70
safe languages, 184, 233
safe publication, 263
safety

ensuring data, 259–264
failures, 263
wait and, 276

ScheduledFuture, 138
ScheduledThreadPoolExecutor, 26, 272
scope

local variables, 209–211
loop variables, 210
SuppressWarnings annotations, 117
variables, obsolete references and, 25

security, 79, 83, 296
attacks on, 185, 303, 305, 313
defensive copying and, 23, 184
holes, causes of, 70, 83, 225, 290
thread groups and, 288

self-use
documenting, for inheritance, 87
eliminating, for inheritance, 92

semantic compatibility, 291
Semaphore, 274
@serial tag, 296
serial version UIDs, 290, 300–301

INDEX 343

@serialData tag, 299
Serializable, 195, 289–294

as marker interface, 179
See also serialization
See also serialized form, 295

serialization, 289–315
API design and, 69
compatibility, 301
costs of, 289–291
defensive copying in, 307
documenting for, 296, 299
effect on exported APIs, 289
extralinguistic mechanisms, 290, 312–313
flexible return classes for, 314
garbage collection and, 308
immutability and, 79, 302
implementation details and, 297
inheritance and, 90–91, 291
inner classes and, 294
interface extension and, 291
JavaBeans and, 289
performance and, 297
proxy pattern, 312–315
singletons and, 18
space consumption and, 297
stack overflows in, 297
Strategy pattern and, 105
synchronization and, 300
testing and, 290
validity checking in, 304, 306–307, 314

serialization proxy pattern, 312–315
serialized forms

as part of exported APIs, 289
custom

See custom serialized form; default
serialized form

defaultWriteObject and, 299
documenting, 296
of inner classes, 294
of singletons, 308

serialver utility, 301
service access API, 8
service provider frameworks, 7–9

reflection and, 232
Set, 85
compareTo and, 64
defensive copies and, 187
enum types and, 159–160

equals and, 34, 42
as restricted marker interface, 179
views and, 22

signature, 3, 189–190
simple implementation, 97
SimpleEntry, 97
simulated multiple inheritance, 96
single-check idiom, 284
singletons, 17

deserialization and, 18
enforcing with an enum type, 17–18
enforcing with private constructors, 17–18
readObject and, 308
readResolve and, 18, 308
serialized form of, 308
as single-element enum types, 18, 308–311

skeletal implementations, 94, 250
source compatibility, 253

See also compatibility
space consumption

enum types, 157, 160, 164
immutable objects and, 76–77
of serialized forms, 297

splitting locks, 270
spurious wake-ups, 277
stack overflows

cloning and, 59
serialization and, 297

state transitions, 75, 259
state-dependent modify operations, 273
state-testing methods, 242–243, 247
static factory methods, 5, 18, 20

and immutable objects, 76
anonymous classes within, 108
API design and, 6
vs. cloning, 61
compactness of, 9
vs. constructors, 5–10
copy factory, 61
flexibility of, 6
generic, 130
generic singleton, 131
for immutable objects, 77
for instance-controlled classes, 6
naming conventions for, 10, 239
performance and, 6
for service provider frameworks, 7

344 INDEX

static factory methods (contd.)
for singletons, 17
strategy pattern and, 105

static fields
immutable objects and, 18
initialization of, 283
strategy pattern and, 105
synchronization of mutable, 270

static import, 99
static initializer, 21
static member classes, 106

as builders, 13
common uses of, 106–107
for enum types, 151
to implement strategy pattern, 105
vs. nonstatic, 106–108
for representing aggregates, 224
serialization and, 294
for shortening parameter lists, 190

static utility methods, 129
storage pool, 26
strategy interface, 104
Strategy pattern, 103–105
stream unique identifiers, 290

See also serial version UIDs
StreamCorruptedException, 299
String, 20
string constants vs. enum types, 148
string enum pattern, 148
string representations, 51–53, 254
StringBuffer, 77, 196, 227, 270
StringBuilder, 77, 196, 227, 270
strings

concatenating, 227
as substitutes for other types, 224–226

subclasses
access levels of methods and, 69
equals and, 36, 41

subclassing, 3
prohibiting, 10, 19, 91
of RuntimeException vs. Error, 244
See also inheritance

subtype relation, 128, 135
subtyping rules, for generics, 112
summary description, 205
super type tokens, 145

supertype relation, 136
SuppressWarnings annotation, 116–118

example, 117, 126–127
switch statements, enum types and, 154,

156
symmetry
compareTo and, 64
equals and, 34–35

synchronization
of atomic data, 260, 262
excessive, 265–270
internal, 270
for mutual exclusion, 259
performance and, 265, 269
serialization and, 300
for shared mutable data, 259–264
for thread communication, 260–285

synchronized modifier, 259
documenting, 278
as implementation detail, 278

synchronizers, 273–277
synthetic fields, 294
System, 28, 231–232, 276, 279
System.currentTimeMillis, 276
System.exit, 232
System.gc, 28
System.nanoTime, 276
System.runFinalization, 28
System.runFinalizersOnExit, 28, 279

T
tag fields, 100
tagged classes vs. class hierarchies, 100–102
tardy finalization, 27
tasks, 272
telescoping constructor, 11, 13, 16
this, in doc comments, 205
Thread, 260, 276, 287
thread groups, 288
thread pools, 271
thread priorities, 287
thread safety, 75, 281

annotations, 279
documenting, 278–281
immutable objects and, 75
levels of, 278–279

INDEX 345

public mutable fields and, 69
ThreadGroup API and, 288

thread scheduler, 286–287
thread starvation deadlock, 276
thread termination, 261
Thread.currentThread, 276
Thread.sleep, 287
Thread.stop, 260
Thread.yield, 287
ThreadGroup, 288
ThreadLocal, 142, 225–226, 228–229
ThreadPoolExecutor, 272, 274
threads, 259–288

busy-waiting, 286
number of runnable, 286

ThreadSafe annotation, 279
thread-safety annotations, 279
Throwable, 171, 251–252, 291
@throws tag, 181, 203–204, 252
throws keyword, 252–253
time-of-check⁄time-of-use attack, 185
Timer, 26, 28–29, 272
TimerTask, 80, 108, 229
Timestamp, 41
TimeZone, 21
TOCTOU attack, 185
toString, 33, 51–53

enum types and, 151–154
exceptions and, 254
general contract for, 51
return value as a de facto API, 53
varargs and, 198–199

transient fields, 297, 299–300
custom serialized form and, 300
deserialization and, 300
logical state of an object and, 300
in serializable singletons, 18, 308

transitivity
of compareTo, 64
of equals, 34, 36

TreeSet, 61, 63, 231
try-finally, 27, 29
type bounds, 115, 128, 145

recursive, 115, 132–133
type casting

See casts, 109

type inference, 9, 130
rules for, 137

type literals, 145
type parameter lists, 129
type parameters, 109

actual, 109, 115
and wildcards, choosing between, 139–140
bounded, 115, 128, 145
formal, 109, 115
in method declarations, 129
naming conventions for, 129
prohibition of primitive types, 128
recursively bounded, 115, 132–133

type parameters, naming conventions for, 238
type safety, 112, 120, 123, 126
type tokens, 115, 142
type variables

See type parameters
typed arrays, from collections, 202
TypeNotPresentException, 173
types

bounded wildcard, 114–115, 135–136,
139, 145

compile-time checking, 110, 230
conversion methods, naming conventions

for, 239
generic, 109, 115, 124–128
interfaces for defining, 98–99, 179–180
nonreifiable, 120, 125, 127
parameterized, 109, 115
radically different, 194
raw, 109–110, 115
unbounded wildcard, 113, 115

nested, 143
wildcard, and return, 137
wildcard, private method to capture, 140

typesafe enum pattern, 148
typesafe heterogeneous container pattern,

142–146
annotation APIs and, 146
incompatibility with nonreifiable types, 145

U
unbounded wildcard types, 113, 115
instanceof operator and, 114
nested, 143
reifiable, 120

346 INDEX

uncaught exceptions, 28
unchecked exceptions, 246

accessor methods in, 255
vs. checked exceptions, 244–245
documenting, 203, 252
ignoring, 258
making from checked, 247
standard, 248
visual cue for, 252

unchecked warnings, 116–118, 132
arrays, generics, and, 127, 161–162
Class.cast and, 144

unconditionally thread-safe, 278
unintentional object retention

See memory leaks
unintentionally instantiable classes, 19
unsafe languages, 233
UnsupportedOperationException, 87,

248–249
unsynchronized concurrent access, 259–264
URL, 41
user, 4
utility classes, 19

in Collections Framework, 63
vs. constant interfaces, 99

V
validity checking

HTML, 208
parameters, 181–183, 190, 251

defensive copying and, 185
failure atomicity and, 256
JavaBeans pattern and, 13
readObject and, 302–307
serialization proxy pattern and, 312, 314
varargs and, 197

value types vs. strings, 224
values vs. identities, 221
values, for enum types, 107
varargs, 197–200

builders and, 15
generics and, 120
performance, 200
retrofitting methods for, 198

variable arity methods, 197
variables

atomic operations on, 259

interface types for, 228
local

See local variables
loop, 210
naming conventions for, 238
type

See type parameters
Vector, 83, 228
views

to avoid subclassing, 40, 64
locking for, 279
to maintain immutability, 187
naming conventions for, 239
nonstatic member classes for, 107
object reuse and, 22

volatile modifier, 262, 283–284

W
wait loop, 276–277
warnings, unchecked, 116–118, 132

arrays, generics, and, 127, 161–162
Class.cast and, 144

weak references, 26, 274
WeakHashMap, 26
while loop vs. for loop, 210
wildcard types

bounded, 115, 145
for Abstract Factories, 16
API flexibility and, 130, 139
class literal as, 167
PECS mnemonic and, 135–136
vs. unbounded, 114

nested, 143
private method to capture, 140
for producers and consumers, 136
as return types, 137
unbounded, 113, 115
usage mnemonic, 136

Window, 28
window of vulnerability, 185
work queues, 271, 274
wrapper classes, 83–85

vs. subclassing, 91, 94
writeObject, 297, 299–300, 315
writeReplace, 91, 312–313
writeUnshared, 79, 307

	Effective Java, Second Edition
	Contents
	Foreword
	Preface
	Acknowledgments
	1 Introduction
	2 Creating and Destroying Objects
	Item 1: Consider static factory methods instead of constructors
	Item 2: Consider a builder when faced with many constructor parameters
	Item 3: Enforce the singleton property with a private constructor or an enum type
	Item 4: Enforce noninstantiability with a private constructor
	Item 5: Avoid creating unnecessary objects
	Item 6: Eliminate obsolete object references
	Item 7: Avoid finalizers

	3 Methods Common to All Objects
	Item 8: Obey the general contract when overriding equals
	Item 9: Always override hashCode when you override equals
	Item 10: Always override toString
	Item 11: Override clone judiciously
	Item 12: Consider implementing Comparable

	4 Classes and Interfaces
	Item 13: Minimize the accessibility of classes and members
	Item 14: In public classes, use accessor methods, not public fields
	Item 15: Minimize mutability
	Item 16: Favor composition over inheritance
	Item 17: Design and document for inheritance or else prohibit it
	Item 18: Prefer interfaces to abstract classes
	Item 19: Use interfaces only to define types
	Item 20: Prefer class hierarchies to tagged classes
	Item 21: Use function objects to represent strategies
	Item 22: Favor static member classes over nonstatic

	5 Generics
	Item 23: Don’t use raw types in new code
	Item 24: Eliminate unchecked warnings
	Item 25: Prefer lists to arrays
	Item 26: Favor generic types
	Item 27: Favor generic methods
	Item 28: Use bounded wildcards to increase API flexibility
	Item 29: Consider typesafe heterogeneous containers

	6 Enums and Annotations
	Item 30: Use enums instead of int constants
	Item 31: Use instance fields instead of ordinals
	Item 32: Use EnumSet instead of bit fields
	Item 33: Use EnumMap instead of ordinal indexing
	Item 34: Emulate extensible enums with interfaces
	Item 35: Prefer annotations to naming patterns
	Item 36: Consistently use the Override annotation
	Item 37: Use marker interfaces to define types

	7 Methods
	Item 38: Check parameters for validity
	Item 39: Make defensive copies when needed
	Item 40: Design method signatures carefully
	Item 41: Use overloading judiciously
	Item 42: Use varargs judiciously
	Item 43: Return empty arrays or collections, not nulls
	Item 44: Write doc comments for all exposed API elements

	8 General Programming
	Item 45: Minimize the scope of local variables
	Item 46: Prefer for-each loops to traditional for loops
	Item 47: Know and use the libraries
	Item 48: Avoid float and double if exact answers are required
	Item 49: Prefer primitive types to boxed primitives
	Item 50: Avoid strings where other types are more appropriate
	Item 51: Beware the performance of string concatenation
	Item 52: Refer to objects by their interfaces
	Item 53: Prefer interfaces to reflection
	Item 54: Use native methods judiciously
	Item 55: Optimize judiciously
	Item 56: Adhere to generally accepted naming conventions

	9 Exceptions
	Item 57: Use exceptions only for exceptional conditions
	Item 58: Use checked exceptions for recoverable conditions and runtime exceptions for programming errors
	Item 59: Avoid unnecessary use of checked exceptions
	Item 60: Favor the use of standard exceptions
	Item 61: Throw exceptions appropriate to the abstraction
	Item 62: Document all exceptions thrown by each method
	Item 63: Include failure-capture information in detail messages
	Item 64: Strive for failure atomicity
	Item 65: Don’t ignore exceptions

	10 Concurrency
	Item 66: Synchronize access to shared mutable data
	Item 67: Avoid excessive synchronization
	Item 68: Prefer executors and tasks to threads
	Item 69: Prefer concurrency utilities to wait and notify
	Item 70: Document thread safety
	Item 71: Use lazy initialization judiciously
	Item 72: Don’t depend on the thread scheduler
	Item 73: Avoid thread groups

	11 Serialization
	Item 74: Implement Serializable judiciously
	Item 75: Consider using a custom serialized form
	Item 76: Write readObject methods defensively
	Item 77: For instance control, prefer enum types to readResolve
	Item 78: Consider serialization proxies instead of serialized instances

	Appendix: Items Corresponding to First Edition
	References
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

